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INTRODUCTION
To combat and reverse the spread of antibiotic resistance pathogens and 
to cure dreadful diseases like cancer, new drugs are at a great demand. 
Nature remains as the ingenious source of new compounds.1 The most 
promising source for the biologically active natural compounds are the 
marine micro-organisms which are currently of great interest due to their 
efficiency to produce array of various metabolites. Biologically active  
natural compounds produced by actinobacterium are structurally exciting,  
many of them have been exploited by the pharmaceutical industry as 
potent drugs and lead molecules that cannot be found in the terrestrial 
micro-organisms2 and some of which can be used in the process of drug 
development.3 
Marine actinobacterium are found to be a rich source of numerous  
secondary metabolites with robust biological activities.4 Actinobacterium  
are considered to be wealthy abundant source for the production of  
diverse novel bioactive compounds, of which most of them are reported  
to be antibacterial, antifungal, anticancer and immunosuppressive  
compounds.5 The unconventional compounds simplify the improvement 
of new and novel drugs with greater therapeutic efficiency and few side  
effects.6 Hence there is an urgent need for exploring the secondary  
metabolites produced by these micro-organisms. Production of the  
bioactive metabolites is notably stimulated by nutritional and cultural 
conditions. Several environmental factors which includes temperature,  
pH and incubation period play a major role in the production of  
antimicrobial agents.7 In addition to the physico-chemical factors the  

components like carbon, nitrogen, concentration of sodium chloride 
also play a prime position in production of bioactive metabolites.8 The 
optimization of the process parameters is very critical in order to achieve 
highest level of metabolite production.9

RSM is a critical analytical tool (a set of statistical and mathematical  
techniques) in designing the optimization process characteristic of  
multiple independent and dependent variables.10,11 The relative significance  
of several variables and the interactive effects among the variables can  
be evaluated concurrently.12 Conventional method based optimization  
involves the analysis of one-factor-at-a-time which is time consuming  
and laborious and the factors interactive effects of the variables are  
ignored and misleading conclusions may be drawn. It is therefore  
indispensable to design the procedure to maximize the highest yielding  
quantities of bioactive metabolites with conserved functional properties.  
Hence RSM is considered more favorable compared to the classical  
approach-based optimization and is an ideal strategy for standardizing 
the process variables.13 
For this type of fermentation, the standard differential mass balance 
equations for three components had been well established by applying 
Monod equation linking substrate concentration to the specific growth 
rate. Further the evaluation of assumed unstructured mathematical 
models with experimental facts for comparison in order to find the best 
model that could describe the whole microbial system, which are more 
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ABSTRACT
Objectives: The present work was carried out to check the capability of  
novel actinobacterium, Nonomuraea longicatena (VSM-16) for bioactive  
metabolite production and optimization of its process parameters by  
statistical and mathematical modeling. Methods: Response Surface  
Methodology (RSM) regression evaluation was done to fit the experimental  
data of each response with the aid of second order polynomial. Unstructured 
kinetic models had been developed for growth, substrate utilization and  
bioactive metabolite production (in terms of responses). Model based  
kinetic parameters were estimated and the profiles of bioactive metabolite 
production, substrate utilization and growth had been drawn. Results: 
The results have shown accurate interaction among process variables at 
optimized values of incubation time at 8-9 days, pH at 8-9, temperature  
at 30-31°C, concentrations of Mannitol at 2-2.2% and Biopeptone at  
1.5-1.7% and the data have been effectively fitted into second-order  
polynomial models. Under these conditions, the responses (zones of  
inhibition) of various organisms Staphylococcus aureus, Streptococcus mutans,  

Xanthomonas campestris, Pseudomonas aeruginosa and Candida albicans 
have been also matched with experimental and predicted consequences. 
Conclusion: The zones of inhibition (responses) for the organisms had 
been also determined to be best fitted with experiment and model values.
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effective in elucidating the fermentation profiles of microbial process for 
bioproducts14-17 
Thus, the present study is targeted to evaluate the optimized conditions 
such as temperature, pH, concentrations of mannitol and biopeptone for 
the bioactive metabolite production by VSM 16 and to further optimize 
the conditions for maximizing the yield of the bioactive metabolite using 
RSM. The purpose of research is also to assess the kinetic parameters 
of bioactive metabolite production from Nonomuraea longicatena strain 
VSM 16 (KU507597).

MATERIALS AND METHODS
Isolation
The marine sediment samples were collected at different depths from 
the Bay of Bengal of coastal Andhra Pradesh, India and air dried. The  
air-dried sediment sample was pre-treated with calcium carbonate  
(10:1 w/w) and incubated at 37°C for 4 days. The pre-treated sediment  
sample was suspended in sterile distilled water (1g in 100 ml). Serial  
dilutions were prepared and 100 µl of 10-4 dilution was spread onto the 
surface of Hemic acid vitamin agar containing 0.1% Hemic acid, 0.05% 
disodium hydrogen phosphate, 0.17% potassium chloride, 0.005% 
MgSO4. 7H2O, 0.001% FeSO4. 7H2O, 0.002% CaCO3, 0.05% B Vitamins, 
0.005% cycloheximide and 2% agar (pH 8) supplemented with nalidixic 
acid (50 µgml-1) and secnidazole (50 µgml-1). After incubation for two  
weeks at 30°C, distinct strain was selected and maintained by sub culturing  
on yeast extract malt extract dextrose (YMD) agar medium at 4°C for 
further study. 

Identification
The promising actinomycetes strain VSM-16 was identified as Nonomuraea  
longicatena VSM 16 with the aid of cultural, morphological, physiological  
and biochemical studies along with 16 S rDNA analysis. The rDNA  
sequence was deposited in the NCBI GenBank with an accession number  
KU507597. The strain was maintained on YMD agar medium at 4°C. 
The purpose of the present work was to optimize the culture conditions  
for enhancing the production of bioactive metabolites by the strain  
using RSM.

Statistical optimization design
RSM is used for modeling and analysis of the problems in which the 
production of the response is influenced by several variables. RSM is  
implemented to optimize the bioactive metabolite production by VSM-16 
with a purpose for finding the favorable conditions. Central Composite  
Design (CCD) of the RSM was employed to optimize the process param-
eters, as per Table 1 for the bioactive metabolite production by VSM-16 
and its antimicrobial activity against 5 responses Staphylococcus aureus, 
Streptococcus mutans, Xanthomonas campestris, Pseudomonas aeruginosa 
and Candida albicans (in terms of Zone of inhibition) (Table S1). Range 
and central point value of all the 5 variables are shown in the Table 1.
The following equation represents the coded process variables

		  x X X xi= − ∆( )0 / � (1)
Where x is dimensionless coded value, Xi is actual value of variables, X0 is 
the actual value of the variables at the centre point and ΔX is Step change 
value. The information obtained from experiments was fitted with the 
second order polynomial equation that is as follows
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Where Y is predicted response, β0 is intercept coefficient, βi is the linear  
coefficient, βij is the interaction coefficients, βii is the quadratic coef-
ficients, Xi and Xj are coded values of the five additive variables under  

study. 3D plots were generated by varying two variables with the  
experimental range with the other variable constant at the central point. 
Fractional factorial design with center points that are augmented with a 
group of “star points” allows estimation of curvature.18 

Statistical analysis
Second order polynomial model was applied to predict the response  
variables and the data analysis was carried out by means of Analysis 
of Variance (ANOVA) and the adequacy of the model was predicted  
through regression analysis (R2). The values were considered to be  
significant while the p-value <0.05. The quality of the fit of the polynomial 
model was expressed by value of correlation coefficient (R2). The main 
indicators for determining the significance and the adequacy of the 
model applied include F-value (Fisher variation ratio), probability value  
(Prob> F) and Adequate Precision. Additionally, the numerical optimization  
was carried out to determine the optimum values of the independent 
variable.

Kinetic Model development
Primary mathematical and unstructured kinetic models quantitatively 
elucidate the substrate utilization and growth-related production formation  
kinetics through Monod model and logistic equations, in a batch  
system.19-21 Models of Logistic (L) and Modified Luedeking-Piret (MLP) 
and Logistic Incorporated Modified Leudeking–Piret (LIMLP) were  
used to duplicate the cell proliferation, Substrate utilization and anti-
microbial metabolite productions of the strain, as per Mangamuri et al. 
2016, 2017.22,23 The data obtained from the models were used to calculate 
all the kinetic parameters involved in fermentation. 

RESULTS
Statistical optimization design
The relationship between the process variables and the response functions 
in terms of antimicrobial activity of bioactive metabolites measured as  
zone of inhibition against test pathogens S. aureus, S. mutans, X. campestris,  
P. aeruginosa and C. albicans. The process variables were identified by 
five factor inscribed central composite design. The experimental values  
of the bioactive metabolite production by the strain and its antimicrobial 
effects against the 5 test pathogens (responses) is measured as zones of 
inhibition (mm). The experimental values were subjected to multiple  
regression analysis using RSM to fit the second-order polynomial equa-
tions (Equation 2). Experimental values of the 5 responses obtained were 
nearer to the anticipated values that indicate the model is satisfactory  
according to the experimental design (Supplementary Table 1). The  
effect of the variables on the five responses was executed through a  
randomized experimental run. The impact of the bioactive metabolite 
produced by the strain was measured as zone of inhibition against the  

Table 1: Experimental range of factors studied using CCD in terms of 
coded and actual factors.

Factors Symbols

Actual levels of coded 
factors

−1 
(Low)

0 
(Middle)

+1 
(High)

Time of incubation (days) A 9 10 11

pH B 7 8 9

Temperature (°C) C 30 35 40

Concentration of Mannitol 
(%w/v) D 1 1.5 2

Concentration of Biopeptone 
(%w/v) E 0.5 1 1.5
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DISCUSSION
The interactive effects of the process variables on the five responses are 
illustrated in 3D (three-dimensional surface plots). Analysis of the 3D 
plots represents that all the three parameters showed the tremendous 
impact at the beginning and reached maximum and further increase of 
the range of values and concentration showed a negative effect on the 
production of bioactive metabolite by VSM-16 and its effect against the 
responses. Figure 1-3 showed the zones of inhibition (mm) against the 
five responses. The increase in the production of bioactive metabolite by 
VSM-16 metabolite could be achieved with incubation time of 8 days,  
pH at 8, temperature range between 30°C, concentration of mannitol  
between 2 and concentration of biopeptone IS 1.5% Beyond these ranges, 
the zone of inhibition produced by the bioactive metabolite decreased.
RSM is a method that is effective statistically and determines the  
coefficients of the mathematical model and optimum conditions using 
minimum set of experiments.21,31 The values of the responses obtained 
from the confirmation experiments and predicted values obtained 
through optimization approach are presented in the Supplementary 
Table 1. The fit summary produced by using the Design-Expert Version 
8 recommends the quadratic and linear models to produce the bioactive 
metabolite by N. longicatena VSM 16. ANOVA variance was executed 
to study the relationships and the results of the second order response 
surface fitting were given in the Table 2 and Supplementary Table 2. The  
P- value of the models for the bioactive metabolite production is  
presented in Supplementary Table 2. The model was considered statistically  
significant if the p-value was less than 0.05.32 The lower value of P  
narrates the mutual interactions between the variables and indicates the 
importance of these variables in the model.33 ANOVA analysis revealed 

five responses ranged from 14 mm to 17 mm for S. aureus, 14 mm to  
18 mm for S. mutans, 14 mm to 18 mm for X. campestris, 13 mm to  
16 mm for P. aeruginosa and 13 mm to 16 mm for C. albicans. 
To analyse the significance of all the factors under study, ANOVA was  
performed and the results are presented in the Table 2. The table  
summarizes the regression coefficient (R2); Sum of Squares (SS), Standard  
Errors (SE), F-value and P-Value. P-value is the probability value which 
determines the effect in the model that was significant statistically.24 The 
smaller the value of p the corresponding coefficient is considered to be 
more significant.25 To have higher confidence levels of 95% to 99% the  
value of p should be equal to 0.05 and 0.01 for the effect to be statistically  
significant.26 The Fisher’s statistical test was employed to determine the 
significance of each factor where the significance degree was ranked 
based on the F-ratio value.27 

Optimum operating conditions and corresponding 
results
Following the same procedure reported by25 the optimum values of  
incubation time, pH, temperature, concentration of mannitol and  
biopeptone were obtained. As referred to desirability function a multi-
response method for optimizing the operational conditions are employed.  
Finally, the optimum values of incubation time, pH, temperature have 
been found to be 8 days, 30°C, pH 8.0 and concentration of mannitol at 
2% and biopeptone at 1.5 %, respectively. 

Checking the model adequacy
Statistics used to check the adequacy of the models at a confidence level 
of 99% are summarized in Table 2. The coefficient of determination (R2) 
indicate the proportion of the total variability of the model explained 
and suggested that for a good fit model. R2 should be close to the value 
1 and should be at least 0.8.28 Hence the R value reflected to be a very  
good fit between the observed and the predicted response values.  
Potential problem of the fit model is that it always increases with  
added factors even if the factors are not significant.29 Hence adjusted R2 
is used to assess the model adequacy since it is adjusted for the number 
of terms in the model.26 Adjusted R2 is adjusted for the size of the model 
in way it decreases the insignificant factors added to the model.29 The 
R2 value higher than 0.9 indicates that, the regression model fit the data 
very well.30 The Coefficient of Variation (CV) is the standard deviation 
expressed as a percentage of the mean and should be less than 10%.26 

The ANOVA variance statistics are given in the Table 2. The suggested 
sequential model sum of squares and lack of fit tests (showing degrees of 
freedom; Mean square, F-value, p-value), model summary statistics for 
the best outcome quadratic model, for all the five responses, is given in 
(Supplementary Table 2). The model was found to be statistically signifi-
cant since the Prob>F value of the model for all the five responses was 
found to be <0.00001 and F values of the model for five responses are 
given in Table S2 and imply that the model is significant. 

Response surface analysis of bioactive metabolite 
production
Optimization of the selected five variables viz. incubation time, pH, 
temperature, concentration of mannitol and biopeptone, a 10-factorial  
design with central point was constructed. Highest activity (zone of  
inhibition represented in mm) of the bioactive metabolite produced by 
the strain against the five responses was obtained when the incubation 
time of 8 days, pH of 7, temperature of 30°C, concentrations of mannitol 
at 2% and bio peptone at 1.5%. The maximum zone of inhibitions against  
all the five responses was found to be 17 mm (for S. aureus), 18 mm  
(for S. mutans), 18 mm (for X. campestris), 16 mm (for P. aeruginosa) and 
16 mm (for C. albicans). 

Table 2: Analysis of ANOVA variance to test the adequacy of the model.

Statistics
Response

S. 
aureus

S. 
mutans

X. 
Campestris

P. 
aeruginosa

C. 
albicans

R2 0.9112 0.9581 0.9504 0.9455 0.9247

Adjusted R2 0.9499 0.9292 0.9162 0.9370 0.9652

Predicted R2 0.9447 0.8566 0.8453 0.9642 0.9652

Adequate
Precession

13.988 20.004 16.452 9.158 14.288

CV % 2.55 2.73 2.89 2.31 3.03

Figure 1: Response surface 3D plots showing the interactive effects of selective  
variables on Zone of inhibition (mm) of the bioactive compound production by 
Nonomuraea longicatena VSM-16 against (i) S. aureus, (ii) S.mutans response.
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Figure 3: Response surface 3D plots showing the interactive effects of selective 
variables on Zone of Inhibition (mm) of the bioactive compound production 
by Nonomuraea longicatena VSM-16 against response C. albicans.

Figure 2: Response surface 3D plots showing the interactive effects of  
selective variables on Zone of inhibition (mm) of the bioactive compound 
production by Nonomuraea longicatena VSM-16 against (i) X. campestris,  
(ii) P. aeruginosa response.

Figure 4: Comparison of experimental and model predicted kinetics  
(a)-(e): for zone of inhibition (mm); (f ): for biomass growth (g/L),  
substrate utilization (g/L).

that the p-values of all the six response were < 0.0001 indicating the 
model was significant. 
The profiles of Nonomuraea longicatena (VSM 16) (KU507597) growth  
and limiting substrate utilization results obtained from shake flask  
experiments and model kinetics were compared in Figure 4 (a) – (f)  
display the comparison of experimental versus model predicted zones  
of inhibition of bioactive metabolite on media inoculated with S. aureus,  
S. mutans, X. campestris, P. aeruginosa and C. albicans over the time. 
From all the profiles, it was observed that model predicted and experi-
mental acquired values show very good fit. Biokinetic parameters used in 
the mathematical model equations were also estimated and are tabulated 

Table 3: Estimated kinetic parameters using L, LILP, LIMLP model  
equations.

Kinetic 
Parameters

S. 
aureus

S. 
mutans

X. 
campestris

P. 
aeruginosa

C. 
albicans

Logistic (L) Model Parameters

µmax (d-1) 1.05

R2 0.99

X0 (g/L) 0.005

Xm (g/L) 0.231

Logistics incorporated Modified Luedeking-Piret (LIMLP) Model parameters

γ (g.S/g.X) 12.46

R2 0.91

η (g.S/(g.X.d)) 1.125

Logistics incorporated Luedeking-Piret (LILP) Model parameters

α (mm/g.X) 65.06 85.08 68.26 58.84 64.25

R2 0.91 0.88 0.93 0.93 0.92

β (mm/(g.X.d)) 8.65 4.32 8.65 8.65 8.65

Table 4: Comparison of zones of inhibition (mm) from shake-flask  
experiments and from model.

Maximum
Zone of 

Inhibition (mm)

S. 
aureus

S. 
mutans

X. 
campestris

P. 
aeruginosa

C. 
albicans

Experimental 26 27 27 25 26

Model fitted 25.36 24.5 26.07 23.95 25.17

in Table 3 which shows determination coefficient (R2) values obtained 
by fitting L, LILP and LIMLP models to the experimental data were 
found to be high, thus revealing good precision of the models. Values 
of growth and non-growth-related product parameters, α and β, were 
estimated using LILP model and a higher α values than β confirmed that 
bioactive metabolite production by the strain is more growth related 
than non-growth related in shake flask. The simulated parameters, γ and 
η, of LIMLP model are also in good agreement with the experimental  
values, implies that this model is more appropriate to symbolize restraining  
substrate utilization kinetics in bioactive metabolite production by  
N. longicatena VSM 16. Further, zones of inhibition from agar diffusion 
assessments are much like model anticipated values (Table 4). 
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CONCLUSION
A novel actinobacterium Nonomuraea longicatena VSM-16 was able to 
produce bioactive metabolites under the influence of the Incubation 
time, pH, Temperature, Concentrations of mannitol and biopeptone. 
Application of the RSM based optimization of the significant factors and 
their interactive effects to produce bioactive metabolites and parameters 
obtained were in consistent with experimental values of the bioactive 
metabolite production using VSM-16. The statistical parameters values 
obtained indicate that the models for responses match the experimental  
facts accurately. The optimized process parameters were 8 days of incu-
bation time, pH at 8, temperature at 30°C and concentrations of mannitol 
and biopeptone was found to be 2% and 1.5%, respectively. Under this 
optimal point the maximum responses represented as zones of inhibi-
tion (in mm) from the bioactive metabolite produced using VSM-16. 
This is the first report on the kinetic modelling for bioactive metabolite 
production (in terms of zones of inhibition studies) by N. longicatena 
VSM 16. The results obtained are promising and merit for large scale 
production of the bioactive natural metabolites for novel VSM-16 that 
can be used to find new compounds for the medical application. 
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