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INTRODUCTION

The common krait (Bungarus caeruleus, generally known as 
Indian krait or Blue krait) is a species of  genus Bungarus. To 
note about its habitat, it is found in the jungles of  the Indian 
subcontinent and its local name in Bangladesh is Shan-

An immunoinformatics approach toward epitope-based vaccine 
design through computational tools from Bungarus caeruleus’s 

neurotoxin
Kutub Uddin Muhammad Ashraf*, Prosenjit Barua, Ayan Saha, Nur Mahammad, 

Jannatul Ferdoush, Dipesh Das, Md. Hamed Hussain, Md. Jibran Alam

Department of Genetic Engineering and Biotechnology, Faculty of Biological Science, 
University of Chittagong, Chittagong, Bangladesh

ABSTRACT

Objective: This study aims to analyze and predict the possibility of designing a vaccine that could make humans immune 
to krait toxin. Materials and Methods: Bungarus caeruleus or common Indian krait is a member of the venomous big 
four snake species. Its venom contains a neurotoxic protein alpha-delta-bungarotoxin-4 and is found to be responsible for 
human death 4-8 h after the snake bite. Antigenicity of this protein was determined by Hopp and Woods and Kolaskar and 
Tangaonkar method. We predicted major histocompatibility complex (MHC) Class I and MHC Class II binding peptides of 
antigenic protein from alpha-deltabungarotoxin-4, which are an important determinant for protection of host from snake bite. 
Fragments selected through this study revealed higher effi ciency binders. Result: Higher percentages of their atoms are 
directly involved in binding in comparison with larger molecules. These potential fragments, therefore can be a novel tool in 
the arena of cross protection to develop host specifi c antibodies in different objectives. We operated AllerHunter for predicting 
allergenicity based on the structural and physiochemical properties of whole alpha-delta-bungarotoin-4, and it was found to be 
nonallergen. The potential epitopes of alpha-delta-bungarotoxin-4 were found to be located at sequences “GENLCYTKM” and 
“FCSSRGKVI” and these were found to be suffi cient for eliciting the desired immune response. In this study, a hypothetical 
immunization is developed, which demands more validation and study. It can be emphasized that such predictive in silico 
study requires an in vivo experiments comprehensibly, which must be assured to validate such approaches. Hence, our goal 
was to identify a conformationally biased epitope sequence, which aims to provide a new paradigm to design epitope-based 
peptide vaccines in order to alleviate immunological infections from Krait neurotoxin. Conclusion: Computational techniques 
manifest the attention of Krait neurotoxin as crucial immunodiagnostic tool for fatal venom proved that most snake venoms 
are in poorly characterized although they are biologically important proteins with therapeutic potentialities.

Key words: Alpha-delta-bungarotoxin-4, antigen protein, bungarotoxin, Bungarus caeruleus, nonamers, peptide vaccine

Original Article

*Address for correspondence: 
Mr. Kutub Uddin Muhammad Ashraf, Department of Genetic Engineering & Biotechnology, Faculty of Biological Science, 
University of Chittagong, Chittagong - 4331, Bangladesh. E-mail: kutubuddinashraf@yahoo.com

Access this article online

Journal Sponsor
Website: 
www.jyoungpharm.org

DOI: 
10.5530/jyp.2014.2.6



Ashraf, et al.: Epitope based vaccine strategy 

36  Journal of Young Pharmacists Vol 6 ● Issue 2 ● Apr-Jun 2014

Khani. Being a member big four species this venomous 
snake imposes a greater range of  snakebites in India.1 Its 
venom is extremely neurotoxic and quickly induces muscle 
paralysis. Study revealed that after 1 to 6 h of  the Krait bite, 
death from respiratory failure may happen. Situation can be 
worsened as Indian krait bites may be 100% fatal if  it is not 
immediately treated.2 Clinically, its venom contains pre- and 
post-synaptic neurotoxins. These neurotoxins generally 
hamper the nerve endings vicinity to the synaptic cleft of  the 
brain. Thus, it creates a peripheral paralysis after blocking 
neuromuscular transmission at the postsynaptic site which 
precludes long-term side-effects. Recent fi ndings indicated 
that the venom of  the common krait (B. caeruleus) produces 
a signifi cant depression of  vital centers in the brainstem. 
It contains an adequate amount of  hemolysins and 
hemorrhagins. Right now, it is known that bungarotoxins 
can block the transmission at the neuromuscular junction. 
Moreover, anticoagulant and neurotoxic activities were 
identified in the protein isolated from common krait 
venom, which was later subjected to sequence and a crystal 
structure was determined. Besides, phospholipase A2 
enzyme is shared by many snakes, which possesses a wide 
array of  effects including vasodilatation, rhabdomyolysis, 
hemolysis, and release of  endogenous autacoids that can 
cause neuromuscular blocking signifi cantly.3 In addition, the 
neurotoxins perhaps contribute to ultrastructural damage 
to motor nerve endings. Hence, polyvalent antivenom 
found no signifi cant development (t = 0.5) in reversing 
respiratory paralysis and preventing delayed neurological 
complications. Study revealed that sixteen (7.6%) patients 
had to die, and a submucosal hemorrhage in the stomach 
was experienced at necropsy in three distinct case studies. 
Mortality could be reduced with an early treatment and free 
access to mechanical ventilation was emphasized.3 Krait 
bites (B. caeruleus) is routinely attributed throughout South 
Asia based on clinical symptoms and the greater superfi cial 
similarities of  B. caeruleus, Bungarus walli and Bungarus sindanus 
was noticed. However, envenoming by krait species other 
than B. caeruleus didn’t respond to available antivenoms as 
observed in Bangladesh.4 It is understood that lifesaving 
antivenoms possesses an immunoglobulin pool of  known 
redundancy and unknown antigen specificity, which 
requires the transmission of  huge volumes of  heterologous 
immunoglobulin to the affected victim. Consequently, it 
raises the possibility of  anaphylactoid and serum sickness 
which render a strong detrimental effect.5 Meanwhile, 
recent progresses in computational tools have eased to 
predict and further analysis of  T-cell and B-cell epitopes 
from antigenic proteins in specialized experiments. This 
has directed to peptide-based vaccines design planning 
that is more unique, optimized and secured to predict the 
peptide binding to human leukocyte antigen (HLA) alleles 

applying structural and modeling techniques. Surprisingly, 
such methodologies strengthened in recent years in order 
to alleviate some acute immunological infections. Until date, 
it is the fi rst immunoinformatics study on B. caeruleus toxin 
and snake venom in Bangladesh perspective.

MATERIALS AND METHODS

Protein sequence retrieval

The protein sequence of  alpha-delta-bungarotoxin-4 
was retrieved from National Center for Biotechnology 
Information’s (NCBI’s) protein database (NCBI, http://
www.ncbi.nlm.nih.gov/protein/) by GenBank accession 
no. CAM11302.1. This sequence was executed and studied 
in order to identify the immunologically relevant regions, 
B cell epitope regions and major histocompatibility complex 
(MHC) Classes I and II binding sites with signifi cant scores.

Identification of conserved domain

To identify the conserved domain of  venom protein 
sequence was aligned with protein superfamily members, 
cd002066 and pfam000877 by using the Conserved Domain 
Database of  NCBI server.

Secondary structure prediction and hydrophilicity 
estimation

ExPASy’s secondary structure prediction server (http://
web.expasy.org/protparam/) 8 was used to get an idea about 
the secondary structure of  the venom protein. Several 
physicochemical parameters given by protparam tool were 
studied, e.g. molecular weight, amino acid and atomic 
composition, instability and aliphatic index, theoretical pI, 
estimated half-life, extinction coeffi cient, and grand average 
of  hydropathicity.9-11 To calculate hydrophilicity, Hopp and 
Woods hydrophilicity scale was analysed.12

Prediction of MHC binding peptide

To predict the MHC binding peptides for venom protein, two 
options were used that were provided by Immune Epitope 
Database (IEDB) analysis resource. For MHC Class I, 
peptide prediction, proteasomal cleavage/TAP transporter/
MHC Class I combined prediction server (http://tools.
immuneepitope.org/processing/) and for MHC Class II 
peptide, MHC II binding prediction (http://tools.
immuneepitope.org/mhcii) were used. We used the Artifi cial 
Neural Network prediction methods in these servers to 
predict the potential nonamers that may signifi cantly bind 
to the binding grooves of  the MHC molecules.
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B-cell epitope prediction

Kolaskar and Tangaonkar antigenicity scale13 available at IEDB 
analysis resource (http://tools.immuneepitope.org/tools/
bcell/iedb_input) was analyzed to predict the B-call epitopes.

Allergenicity assessment

In order to assay the degrees of  allergenicity, we operated 
AllerHunter (http://tiger.dbs.nus.edu.sg/AllerHunter/
index.html). A combinational prediction by using both 
support vector machine and pair-wise sequence similarity 
makes AllerHunter a very useful program for cross-reactive 
allergen prediction. Cross-reactivity is a phenomenon, 
which is based on similarity among proteins and allergens, 
whereas allergenicity means the ability of  an allergen to 
induce immunoglobulin E antibody production. AllerHunter 
predicts allergens as well as non-allergens with high specifi city. 
Moreover, it does not compromise its efficiency, while 
classifying proteins with similar sequence to known allergens.

Epitope conservancy and population coverage 
analysis

Epitope conservancy and populations covered by epitopes 
when used as vaccine were analyzed by using epitope 
analysis tools of  IEDB analysis resource server (http://
tools.immuneepitope.org/main/html/analysis_tools.html). 
Predicted epitopes and the protein sequences that were 
used to predict the conserved region were used to fi nd out 
the accuracy of  the prediction.

Docking simulation

In silico docking simulation was done to fi nd out whether or 
not these peptides will bind to the MHC molecules when 
will be applied for further in vivo experiments. For docking 
simulation study, we used AutoDock Vina14 developed by 
The Scripps Research Institute. To carry out the docking 
simulations, three MHC II molecules (PDB ID: 1 H15, 
1 AQD and 1 DLH) and three MHC I molecules (PDB 

ID: 1 A1O, 1 JHT and 3 LKN) were taken into consideration. 
PDB fi les for the predicted epitopes were prepared by using 
HHPred to use them as ligands. AutoDock tools were used 
for preparation of  receptor and ligand molecules for docking 
simulations at the binding groove of  the MHC molecules. To 
reduce calculation time, search exhaustiveness was set to four.

RESULTS

Identification of conserved domain

Two conserved domains were found in conserved domain 
search; one of  which was snake toxin domain and other 
was a disulfi de rich snake toxin. In both cases, amino acids 
3-68 were shown conserved (Figure 1).

Secondary structure analysis

The secondary structural features of  alpha-delta-
bungarotoxin-4 protein are summarized in Table 1.

Hydrophilicity estimation

Hopp and Woods hydrophilicity scale was used to 
determine the hydrophilicity of  the conserved region. The 
venom protein was found to be hydrophilic in nature as 
the average value of  the scale was 0.185 with the minimum 
value of  1.171 and maximum of  0.986 (Figure 2).

Figure 1: Conserved domain search for alpha delta bungarotoxin-4

Table 1: Secondary structural analysis of alpha-delta-bungarotoxin-4 
by ProtParam tool
Criteria Assessment
Number of amino acids 76
Molecular weight 8305.5 Da
Isoelectric pH 7.65
No. of negatively charged residues (Asp+Glu) 6
No. of positively charged residues (Arg+lys) 7
Formula C353H556N96O113S11

Extinction coeffi cient 10595
Instability index 45.57
Aliphatic index 48.68
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Prediction of MHC binding peptide and B-cell 
epitopes

A total of  48 alleles were analyzed for MHC Class I peptide 
prediction by using artifi cial neural network method.15,16 
Again, 26 MHC Class II alleles were analyzed for prediction 
of  MHC II binding peptides from the venom protein. 
Nonamers that showed high prediction results were selected 
in this study. Interaction among different alleles with these 
peptides is summarized in Tables 2 and 3. In case of  MHC 
Class II prediction, artifi cial neural network alignment 
method was used.17 For selection of  all the MHC binding 
peptides, MHC IC50 score was below 250 nM. The B cell 
epitopes that were situated in the conserved domain region 
of  alpha-delta-bungarotoxin-4 were selected by analyzing 

Kolaskar and Tangaonkar antigenicity scale. The B cell 
epitope regions that match the same regions as the predicted 
MHC binding peptides are summarized in Table 4. Two 
nonamers were found that fall into B cell epitope region.

Figure 2: Hopp and Woods hydrophilicity results for alpha delta 
bungarotoxin-4

Table 2: Prediction of MHC I peptides
Allele Start End Length Peptide Proteasome score TAP score MHC score Processing score MHC IC50

HLA-A*03:01 46 54 9 CVATCPQPK 0.49 0.24 −2.04 0.73 110
HLA-A*11:01 46 54 9 CVATCPQPK 0.49 0.24 −1.76 0.73 57
HLA-A*68:02 8 16 9 TSTSPISTV 0.96 0.13 −1.18 1.09 15
HLA-C*12:03 8 16 9 TSTSPISTV 0.96 0.13 −1.96 1.09 91
HLA-B*15:01 26 34 9 YTKMWCDAF 1.15 1.08 −1.61 2.22 41
HLA-C*14:02 26 34 9 YTKMWCDAF 1.15 1.08 −2.08 2.22 121
HLA-B*35:01 18 26 9 CPSGENLCY 1.31 1.12 −0.70 2.43 5
HLA-B*53:01 18 26 9 CPSGENLCY 1.31 1.12 −1.18 2.43 15
HLA-B*39:01 5 13 9 CHTTSTSPI 0.85 0.22 −2.23 1.08 170
HLA-C*14:02 5 13 9 CHTTSTSPI 0.85 0.22 −2.04 1.08 109
HLA-B*40:01 21 29 9 GENLCYTKM 0.99 -0.02 −1.85 0.96 71
HLA-B*40:02 21 29 9 GENLCYTKM 0.99 -0.02 −1.61 0.96 41
HLA-B*44:02 21 29 9 GENLCYTKM 0.99 -0.02 −2.14 0.96 138
HLA-B*44:03 21 29 9 GENLCYTKM 0.99 -0.02 −2.17 0.96 147
HLA-C*03:03 34 42 9 FCSSRGKVI 1.43 0.26 −2.13 1.69 135
HLA-C*08:02 34 42 9 FCSSRGKVI 1.43 0.26 −2.10 1.69 125
HLA-C*12:03 34 42 9 FCSSRGKVI 1.43 0.26 −1.40 1.69 25

*TAP: Transporter of antigenic peptide

Table 3: Prediction of MHC II peptides
Allele Start End Peptide IC50

HLA-DQA1*01:02/DQB1*06:02 24 32 LCYTKMWCD 47.20
HLA-DRB1*07:01 24 32 LCYTKMWCD 62.20

HLA-DQA1*05:01/DQB1*03:01 34 42 FCSSRGKVI 98.60
HLA-DRB1*01:01 34 42 FCSSRGKVI 34.40
HLA-DRB1*07:01 34 42 FCSSRGKVI 3.70
HLA-DRB1*09:01 34 42 FCSSRGKVI 194.80
HLA-DRB1*11:01 34 42 FCSSRGKVI 42.50
HLA-DRB3*01:01 34 42 FCSSRGKVI 244.80
HLA-DRB5*01:01 34 42 FCSSRGKVI 10.40

HLA-DQA1*05:01/DQB1*03:01 42 50 IELGCVATC 209.50
HLA-DRB1*04:04 42 50 IELGCVATC 145.40
HLA-DRB1*01:01 5 13 CHTTSTSPI 75
HLA-DRB1*07:01 5 13 CHTTSTSPI 11.10
HLA-DRB1*01:01 1 9 YTLLCHTTS 116.90
HLA-DRB1*04:01 1 9 YTLLCHTTS 42.30
HLA-DRB1*04:04 1 9 YTLLCHTTS 22.70
HLA-DRB1*04:01 4 12 LCHTTSTSP 104.80
HLA-DRB1*04:05 4 12 LCHTTSTSP 102.20
HLA-DRB1*04:01 3 11 LLCHTTSTS 179.60
HLA-DRB1*04:04 3 11 LLCHTTSTS 182.30

Table 4: Prediction of B cell epitopes by Kolaskar and Tangaonkar 
method
Start End Peptide Peptide length
21 28 GENLCYTK 9
31 54 CDAFCSSRGKVIELGCVATCPQPK 24
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Epitope conservancy and population coverage 
prediction

The epitopes 21-29 and 34-42 were found to be 100% 
conserved in a scale of  sequence match <100%. The 
minimum identity for both epitopes was more than 
20%, and the maximum was 88.89% for both epitopes. 
Population coverage analysis yielded signifi cant results 
using both epitopes (Table 5).

Allergenicity evaluation

The query sequence didn’t meet the criteria set by the 
Food and Agriculture Organization (FAO)/World Health 
Organization (WHO) evaluation scheme for cross-reactive 
allergen prediction. Hence, the query sequences were 
classifi ed as a nonallergen by the FAO/WHO evaluation 
scheme. Alpha-delta-bungarotoxin-4 protein was predicted 
as a non-allergen with a prediction score of  0.0 (sensitivity 
= 93.0%, specifi city = 79.4%).

DOCKING SIMULATION RESULTS

The area that were selected on the receptor molecules 
for docking with the epitopes are summarized in Table 6. 
One angstrom spacing was used to select the binding site. 
The center box area was positioned carefully to make the 
docking of  ligands at the binding groove of  the receptors. 
The predicted peptides showed signifi cant binding affi nity 
to the MHC receptors (Table 7). The binding energy of  
the predicted epitopes were compared with the binding 
energy of  the Ls6 peptide (Sequence: KPIVQYDNF) 
from malaria parasite with HLA-B*5301 (−6.0 kCal/mol). 
Strong binding affi nity gives a clear idea that peptide 
vaccine designed by using these epitopes may effi ciently 
work in vivo to elicit humoral and cell mediated immunity 
(Figures 3 and 4).

DISCUSSION

Prediction of  epitope and mapping these on the protein 
surface is a vital step for epitope based vaccine design. 
A number of  ways were attempted in earlier studies, but 
here we tried to predict the epitopes more accurately by 
starting from the very basic step like fi nding the conserved 
and hydrophilic regions of  protein and ending by docking 
of  epitopes to HLA receptors.

The conserved region was found by aligning with protein 
family member cd00206 and pfam00087. The actual 
alignment for conserved region was done with the sequences, 

Figure 3: Visualization of docking results for predicted peptides with 
major histocompatibility complex Class I receptors by using AutoDock 
Tools. (a-c) docking images of “GENLCYTKM” with 3LKN, 1A1O, 1JHT 
respectively; (d-f) represents docking images of “FCSSRGKVI” with 
3LKN, 1A1O, 1JHT respectively

chain B-acetylcholinesterase (E.C. 3.1.1.7) complexed with 
fasciculin-II (PDB: 1FSS_B), chain A-crystal structure of  
kappa-bungarotoxin At 2.3-angstrom resolution (PDB: 
1KBA_A), chain A-erabutoxin (PDB: 1QKD_A), Chain 
A-nuclear magnetic resonance structure of  the complex 
between A-bungarotoxin and A mimotope of  the nicotinic 
acetylcholine receptor (PDB: 1HOY_A), toxin S4C6 
(UniProtKB/Swiss-Prot: P25670.1), alpha-elapitoxin-
Ast2a (UniProtKB/Swiss-Prot: P01380.1), long neurotoxin 
homolog Pa ID (UniProtKB/Swiss-Prot: P14612.2), short 
neurotoxin one (UniProtKB/Swiss-Prot: P10808.1), weak 
toxin CM-1c (UniProtKB/Swiss-Prot: P25676.1), alpha-
neurotoxin (Pseudonaja textilis) (GenBank: AAF75223.1) 
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Table 5: Population coverage by epitopes “GENLCYTKM” and 
“FCSSRGKVI”
Population/area Class I and II

Coveragea Average 
hitb

PC90c

Australia 76.50% 2.44 0.85
Australia : Cape York 68.30% 2.06 0.63
Australia : Groote Eylandt 71.53% 1.93 0.70
Australia : Kimberley 90.26% 3.31 2.01
Australia : Yuendumu 48.51% 1.10 0.39
Europe 91.41% 4.02 2.11
Europe : Bulgarian 31.70% 0.71 0.29
Europe : Croatian 21.97% 0.46 0.26
Europe : Cuban (Eu) 25.30% 0.53 0.27
Europe : Czech 91.86% 4.04 2.14
Europe : Finn 90 77.36% 2.61 0.88
Europe : Georgian 37.37% 0.85 0.32
Europe : Irish 77.51% 2.49 0.89
Europe : North America (Eu) 58.43% 1.51 0.48
Europe : Slovenian 81.71% 2.67 1.09
North Africa 85.65% 3.13 1.39
North Africa : Algerian 99 63.06% 1.63 0.54
North Africa : Chaouya 52.87% 1.30 0.42
North Africa : Metalsa 59.83% 1.56 0.50
North Africa : Moroccan 98 83.17% 2.71 1.19
North Africa : Moroccan 99 74.21% 2.17 0.78
North America 92.18% 3.73 2.15
North America : Amerindian 41.30% 0.97 0.34
North America : Lacandon 58.15% 1.42 0.48
North America : Seri 72.67% 2.18 0.73
North America : Yupik 98.02% 4.73 2.94
North-East Asia 72.53% 2.22 0.73
North-East Asia : Buriat 0.00% 0.00 0.00
North-East Asia : Korean 200 72.83% 2.21 0.74
North-East Asia : Tuva 72.48% 2.22 0.73
Oceania 71.53% 2.15 0.70
Oceania : American Samoa 58.27% 1.31 0.48
Oceania : Filipino 66.22% 1.90 0.59
Oceania : Ivatan 62.84% 1.61 0.54
Other 88.33% 3.50 1.71
Other : Brazilian 25.33% 0.53 0.27
Other : Brazilian (Af Eu) 62.84% 1.76 0.54
Other : Cuban (Af Eu) 24.48% 0.51 0.26
Other : Mexican 88.23% 3.44 1.70
Other : North America (Hi) 44.83% 1.08 0.36
South America 98.32% 4.35 2.97
South America : Bari 63.73% 1.27 0.55
South America : Guarani-Kaiowa 97.47% 3.95 2.68
South America : Guarani-Nandewa 99.24% 4.59 3.56
South-East Asia 81.52% 2.78 1.08
South-East Asia : Ami 97 71.26% 1.85 0.70
South-East Asia : Atayal 81.18% 2.49 1.06
South-East Asia : Bunun 61.89% 1.62 0.52
South-East Asia : Chinese 40.85% 0.92 0.34
South-East Asia : Hakka 71.17% 2.02 0.69
South-East Asia : Han-Chinese 149 35.14% 0.72 0.31
South-East Asia : Han-Chinese 572 30.60% 0.62 0.29
South-East Asia : Kinh 74.35% 1.95 0.78

Population/area Class I and II
Coveragea Average 

hitb
PC90c

South-East Asia : Malay 79.78% 2.46 0.99
South-East Asia : Minnan 71.90% 2.08 0.71
South-East Asia : Muong 31.62% 0.70 0.29
South-East Asia : North 
America (As)

40.96% 0.94 0.34

South-East Asia : Okinawan 58.78% 1.47 0.49
South-East Asia : Paiwan 51 87.01% 2.87 1.54
South-East Asia : Pazeh 73.97% 2.18 0.77
South-East Asia : Puyuma 49 70.69% 2.05 0.68
South-East Asia : Rukai 82.85% 2.71 1.17
South-East Asia : Ryukuan 0.00% 0.00 0.00
South-East Asia : Saisiat 68.10% 1.74 0.63
South-East Asia : 
Singapore (Chinese)

24.96% 0.50 0.27

South-East Asia : Siraya 81.52% 2.70 1.08
South-East Asia : Thai 20.03% 0.42 0.25
South-East Asia : Thao 68.36% 1.79 0.63
South-East Asia : Toroko 84.51% 2.70 1.29
South-East Asia : Tsou 66.51% 1.84 0.60
South-East Asia : Yami 58.17% 1.43 0.48
South-West Asia 90.19% 3.63 2.01
South-West Asia : Arab Druze 36.60% 0.84 0.32
South-West Asia : Israeli Jews 34.79% 0.79 0.31
South-West Asia : Kurdish 35.58% 0.80 0.31
South-West Asia : Omani 2.47% 0.05 0.21
South-West Asia : Turk 85.89% 2.94 1.42
Sub-Saharan Africa 78.06% 2.63 0.91
Sub-Saharan Africa : Doggon 29.30% 0.66 0.28
Sub-Saharan Africa : Kenyan 142 71.37% 1.93 0.70
Sub-Saharan Africa : Kenyan 
Highlander

4.91% 0.10 0.21

Sub-Saharan Africa : Kenyan 
Lowlander

15.04% 0.31 0.24

Sub-Saharan Africa : Mandenka 1.06% 0.02 0.20
Sub-Saharan Africa : North 
America (Af)

25.06% 0.55 0.27

Sub-Saharan Africa : Rwandan 53.89% 1.32 0.43
Sub-Saharan Africa : Shona 76.84% 2.51 0.86
Sub-Saharan Africa : Ugandan 40.97% 0.97 0.34
Sub-Saharan Africa : Zambian 24.36% 0.53 0.26
Sub-Saharan Africa : Zulu 85.68% 3.12 1.40
Average
(standard deviation)

59.66% 
(26.09%)

1.84 
(1.14)

0.81 
(0.69)

aProjected population coverage. bAverage number of epitope hits/HLA 
combinations recognized by the population. cMinimum number of epitope 
hits/HLA combinations recognized by 90% of the population

Contd...

and chain A-crystal structure of  the extracellular domain 
of  the nicotinic acetylcholine receptor one subunit 
bound to alpha-bungarotoxin At 1.9 A resolution 
(PDB: 2QC1_A), cytotoxin 10 (UniProtKB/Swiss-Prot: 
P01453.1), cytotoxin V-II-2/V-II-3 (UniProtKB/Swiss-
Prot: P01474.1), cytotoxin 11 (UniProtKB/Swiss-Prot: 
P62394.1), cytotoxin homolog S3C2 (UniProtKB/Swiss-
Prot: P19003.1), cytotoxin homolog S4C8 (UniProtKB/
Swiss-Prot: P19004.1), toxin C10S2C2 (UniProtKB/
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Swiss-Prot: P25684.1), toxin S4C8 (UniProtKB/Swiss-
Prot: P25683.10), toxin 4.9.6 (UniProtKB/Swiss-Prot: 
P01405.1), toxin C13S1C1 (UniProtKB/Swiss-Prot: 
P18329.10. cd00206 protein domain family represents 
a snake toxin domain that is present in short and long 
neurotoxins. This domain blocks the excitation of  muscles 
by preventing binding of  acetylcholine to the acetylcholine 
receptors at the postsynaptic membrane of  skeletal 
muscles.6 pfam00087 represents a family of  venomous 
neurotoxins and cytotoxins.

The local hydrophilic region of  the protein which is 
typically more exposed to the surface is detected as the 

Figure 4: Visualization of docking results for predicted peptides with 
major histocompatibility complex Class I receptors by using AutoDock 
Tools. (a-c) docking images of “GENLCYTKM” with 1AQD, 1DLH, 
1H15 respectively; (d-f) docking images of “FCSSRGKVI” with 1AQD, 
1DLH, 1H15 respectively

Table 6: Binding site coordinates for protein-ligand docking between 
MHC molecules and peptides prepared by autodock tools
MHC molecule PDB ID Axis Center box Size
3LKN X 3.659 36

Y −15.259 22
Z −36.372 18

1A1O X 3.12 44
Y 26.631 22
Z 19.201 16

1JHT X 20.706 26
Y 37.098 36
Z 72.438 20

1AQD X 12.939 34
Y 24.708 18
Z 43.286 22

1DLH X 4.301 40
Y 74.656 14
Z 19.422 22

1H15 X 95.81 22

Y −5.497 16

Z 16.03 36

Table 7: Docking simulation results prepared by autodock vina for 
predicted epitopes
Epitope 
sequence/
ligand

MHC Receptor 
PDB ID

Affi nity 
(Kcal/mol)

Dist. from 
RMSD l.b.

Best mode 
RMSD u.b.

GENLCYTKM MHC I 3LKN −6.5 0.0 0.0
1A1O −6.8 0.0 0.0
1JHT −5.5 0.0 0.0

MHC II 1AQD −6.0 0.0 0.0
1DLH −5.5 0.0 0.0
1H15 −6.2 0.0 0.0

FCSSRGKVI MHC I 3LKN −6.8 0.0 0.0
1A1O −6.0 0.0 0.0
1JHT −6.5 0.0 0.0

MHC II 1AQD −5.6 0.0 0.0
1DLH −4.6 0.0 0.0
1H15 −5.9 0.0 0.0

antigenic site and the corresponding amino acids of  
these sites are detected as the antigenic peptides. Hopp 
and Woods hydrophilicity scale was used to predict the 
antigenic peptides of  the selected venom protein. Hopp 
and Woods hydrophobicity scale is actually a hydrophilicity 
scale in which window size seven gives the ideal values 
for a protein hydrophilicity nature. Hopp and Woods 
scale assigns non-polar residues with a negative value. By 
analyzing the ProtScale results, the acetylcholine receptor 
binding domain of  alpha-delta-bungarotoxin-4 was found 
to be hydrophilic in nature and may be this hydrophilicity 
favors the protein to interact the domain with the receptors.

The AllerHunter score value is the probability that a 
particular sequence is a cross-reactive allergen. However, 
the threshold for prediction of  cross-reactive allergen is 
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adjusted such that a sequence is predicted as a cross-reactive 
allergen if  its probability is ≥0.06. The probability threshold 
was determined during the fi ne tuning of  the prediction 
model. AllerHunter has optimum prediction result at 
that particular threshold. The FAO and WHO evaluation 
scheme is a guideline by the FAO and WHO for sequence 
based allergenicity prediction. This guideline clearly states 
that a sequence can be a potentially allergenic if  it either has 
an approximated identity of  at least six contiguous amino 
acids or >35% sequence identity over a window of  80 
amino acid chains when compared with known allergens.18 
Hence, if  a vaccine was developed by using the venom 
peptides, it will not create allergic reactions.

For the prediction of  MHC binding molecules in both 
cases (MHC I and II), artifi cial neural network method 
was used. For T-cell Class I epitope prediction, the neural 
network method was designed by combining sparse 
encoding, blosum encoding and input derived from 
hidden Markov models.15 MHC Class II molecules are 
highly polymorphic in nature, and this polymorphism 
exclusively corresponds with a few differences along the 
peptide binding groove in antigenic fragments.19 The 
binding between antigenic peptides (epitopes) and the 
MHC molecule is a crucial step in the cellular immune 
response. In this study, for MHC Class II peptide 
prediction, we used artificial neural network based 
method NN-align, which was evaluated by 26 human 
MHC Class II alleles.17 IC50 is a measure of  half  of  a 
compound’s concentration that would be required to 
inhibit biological effectiveness. Lower IC50 calculation 
refl ects a drug’s effectiveness in a lower concentration. 
A highly potent drug should be effective in vivo at a 
lower concentration to prevent consumption of  the large 
amount of  a given drug.20-23 In this study, the epitopes 
were predicted at IC50 level of  lower than 250 nM. Hence, 
a low dose of  vaccine preparation by these peptides 
may be potent. Kolaskar and Tangaonkar antigenicity 
scale is the simplest method for determining antigenic 
determinants. This method is based on the occurrence 
of  amino acid residues in experimentally determined 
epitopes. By comparing the MHC Class I, Class II and 
B-cell epitope predictions two nonameric peptides 
“GENLCYTKM” and “FCSSRGKVI” were found to be 
most common. The nonameric peptide “GENLCYTKM” 
interacted four MHC I alleles. “FCSSRGKVI” interacted 
with three MHC I alleles and seven MHC II alleles. These 
two peptides were the most interacting nonamers than 
others that were found during the prediction analysis.

Epitope conservancy check and population coverage 
are two important analysis steps that might refl ect to 

the possibility of  an epitope to be used in designing 
a vaccine. High epitope conservancy score indicates a 
good chance of  effectiveness of  epitope vaccine in vivo. 
Population coverage is a limitation for which reason drugs 
could be limited to a specifi c region or population. High 
population coverage of  vaccine compound is signifi cant 
due to a lot of  people can be benefi ted by only one vaccine 
preparation. It was predicted that in combination of  
the two epitopes, more than 90% of  the population of  
Kimberly, Europe, Czech, Yupik, North America, South 
America, Guarani-Kaiowa, Guarani-Nandewa, South West 
Asia was covered. The maximal population coverage was 
99.24% for Guarani-Nandewa and minimal was 0% for 
Buriat. The prediction showed promising results that these 
epitopes may cover a high amount of  population when 
applied as a vaccine.

In this study, we tried to minimize the predicted 
promiscuous epitopes and pin-point the effi cient epitope 
sequences that have the greatest chance for eliciting 
humoral and cell mediated immunity in the human body 
against alpha-delta-bungarotoxin-4. As it is a concern that 
the prediction based epitope design might not work in 
reality, the epitopes were subjected to in silico validation by 
protein ligand docking simulation. Docking stimulation of  
the predicted MHC peptides along with HLA molecules 
was executed to investigate whether or not the designed 
vaccine will elicit the suffi cient immunological responses 
in vivo. Lower energy scores represent better binding 
between receptor and ligand.24 Docking simulation energy 
scores of  the predicted epitopes were found signifi cantly 
low. By summing up the prediction results, we hypothesize 
in this study a divalent peptide vaccine for immunization 
against alpha-delta-bungarotoxin-4.

CONCLUSION

All of  these computational techniques manifest the 
attention of  Krait neurotoxin as crucial immunodiagnostic 
tool for initial research methodologies in order to disease 
diagnosis and future drug design against this fatal venom. 
However, it is proved that most snake venoms are in poorly 
characterized although they are biologically important 
proteins with therapeutic potentialities. Hence, further 
studies and research in this fi eld is quite obligatory to 
identify and characterize novel venom proteins in order 
to use it as a lead or structural templates for discovering 
new therapeutic agents in the near future. In addition, the 
above immunoinformatics attempt can be a new paradigm 
in improving immunotherapeutics, immunodiagnostics and 
gaining a better understanding of  molecular autoimmune 



Ashraf, et al.: Epitope based vaccine strategy 

Journal of Young Pharmacists Vol 6 ● Issue 2 ● Apr-Jun 2014 43

susceptibility in a broader range. B. caeruleus alpha-delta-
bungarotoxin-4 sequence is directly involved to empower 
and direct the immune system to protect the individual 
host from the bungarotoxin. Apart these, being cell surface 
proteins, MHC molecules play a superfi cial role in host 
immune reactions and respond to almost all antigens which 
render effects on specifi c sites. That’s why, the predicted 
regions of  MHC binding molecules act as red fl ags for 
detecting antigenic specifi city, which generate immune 
responses comparatively against the parent antigen. Hence, 
a little fragment of  antigen has potentialities to induce 
immune responses against whole antigen precisely. As a 
result, this novel method accumulates the prediction of  
MHC class binding peptides, TAP transport effi ciency 
and proteosomal C terminal cleavage in a well fashioned 
manner. Hence, this superfi cial concept can be implemented 
to design synthetic and subunit peptide vaccine against 
lethal Krait venom that may save thousand lives especially 
in India, Sri Lanka, and Bangladesh. Thus, we opine that 
the given information and approaches in this study will be 
more blissful for researchers to investigate novel human 
therapeutics like design of  subunit and synthetic peptide 
vaccine from snake venoms alpha-delta-bungarotoxin-4.
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