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INTRODUCTION

In recent years, there has been tremendous focus on 
understanding the role of  vascular progenitor cells in the 
therapy of  several cardiac and vascular disorders [Figure 
1]. Several adult and embryonic precursor cell populations 
have reported to differentiate the vascular cell phenotype[1] 
and participate in a range of  biological repair functions 
within the cardiovascular system.[2,3] The cell therapy era 
as moved from the preclinical arena to the clinical phase 

wherein potential beneÞ ts are reported with the use of  
progenitor cells in the context of  cardiovascular disorders, 
especially myocardial infarction.[2,4-9] However, considerable 
preclinical work is needed to further reÞ ne the progenitor 
cell therapy based medicine.

Diseases associated with vascular complications such 
as atherosclerosis, stroke, hypertension, diabetes, and 
myocardial infarction are a major cause of  morbidity and 
mortality globally despite advancements in nutritional, 
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pharmacological, and interventional approaches.[1,10�24] 
Regeneration medicine is a new addition to the current 
therapeutic approaches to strengthen the global Þ ght against 
combating the devastation of  a cardiovascular disease 
pandemic[12,25�32]. The focus on regenerative medicine has 
increased in the last decade with the identiÞ cation of  several 
types of  stem cells with the potential to be differentiated 
into functional endothelium and/or smooth muscle cells 
i.e., the so-called vascular progenitors.[33�36] In general, two 
types of  stem cell i.e., embryonic and adult stem cells have 
been explored for potential use in regenerative medicine. 
While embryonic stem cells have potential to differentiate 
into a variety of  cell types, adult stem cells (progenitor 
cells) are limited in their plasticity.[37�40] Due to the ethical 
issues and technical challenges involved in the isolation and 
use of  embryonic stem cells, increasing interest is focused 
on progenitor cells. In the exploration of  progenitor 
cells, several possible sources of  these cells have been 
documented that can be classiÞ ed into at least three distinct 
groups i.e., marrow-derived, the circulating pool, and tissue-
resident progenitor cells. It�s debatable as well as likely that 
the circulating pool and the tissue resident progenitor cells 
are at some point derived from the marrow.[37�39,41] Vascular 
progenitor cells are a broad category of  cells that include 
precursor cells in the bone marrow, circulation, and in 
several local tissues and have the capacity to differentiate 
into endothelial cells and/or smooth muscle cells under 
appropriate conditions.[1,12,14,42] However, the pathway for 

differentiation of  these cells from a common, separate, or 
multiple precursors is poorly characterized/understood, 
hence leading to confusion in the lineage tracing of  these 
cells and wide variations in the results observed by different 
working groups across the globe.

ENDOTHELIAL PROGENITOR CELLS

Endothelial progenitor cells (EPCs) are cells with the 
potential to differentiate into functional endothelial cells. 
EPCs were initially identiÞ ed and isolated in 1997 by 
Asahara, et al.[43] on the basis of  vascular endothelial growth 
factor receptor-2 (VEGFR2) and CD34 coexpression. 
Since the initial report, several groups have attempted to 
better deÞ ne the EPC population, and are reported to 
express Þ broblast growth factor receptor, CD38, c-kit, 
CD31, CD146, CXCR4, von Willebrand factor (vWF), 
vascular endothelial cadherin (VE-cadherin), Tie-2/TEK 
(angiopoietin-1 receptor precursor or tunica intima EC 
kinase), ß k1, and CD133.[6,44�46] Possibly, subsets of  CD34+ 
cells that express CD133 and Flk-1 are the phenotypical and 
functional markers of  EPCs that play a role in postnatal 
angiogenesis.[47,48] However, expression of  the surface 
markers described above does not include stem cells from 
other sources (mesenchymal or even in the vessel wall) or 
their progenitor cells.[49�53] Despite this controversy over the 
EPC surface marker, these are widely studied cells both in 
the preclinical and clinical context[8,27,47,54�64] and have been 
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Figure 1: Schematic representation of the progenitor cell role in physiology and pathophysiology. Under 
a physiological state, the routine tissue repair process is carried out by the endogenous progenitor cells. 
However, this function is compromised under a pathological state. Interestingly, the progenitor function 
can be revoked using pharmacological or possibly natural product based approaches
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reported to considerably contribute to the angiogenesis 
and vascular repair process. [58,60,65-71]

Smooth muscle progenitor cells or smooth muscle 
out growth cells

Smooth muscle progenitor cells (SPCs) are cells with the 
potential to differentiate into functional smooth muscle cells. 
CD14/CD105 double positive populations from human 
peripheral blood mononuclear cells (PBMC) are reported 
to be a precursor of  SMC, and indeed atherosclerotic 
patients contain signiÞ cantly higher circulating levels of  
these cells. [33,37,72-75] These precursors, when maintained 
under speciÞ c growth factor-supplemented media, appear 
spindle-shaped and express α-smooth muscle actin in 
addition to CD34-, CD45+, CD14+, and CD105+ markers. [44] 
Human mononuclear cells isolated from buffy coat 
seeded on collagen type 1 matrix yield outgrowth cells in 
endothelial growth medium (EGM-2) and platelet-derived 
growth factor media, which have SPCs like phenotype. 
Selection in platelet-derived growth factor-enriched 
medium results in rapid outgrowth and expansion of  
smooth muscle outgrowth cells (SOC). These SOCs 
are positive for smooth muscle cell-speciÞ c alpha actin 
(alphaSMA), myosin heavy chain, and calponin and are also 
positive for CD34, Flt1, and Flk1 receptor but negative for 
Tie-2 receptor expression, suggesting a potential smooth 
muscle progenitor phenotype. Furthermore, integrin 
alpha5beta1 expression is signiÞ cantly increased in SOCs 
compared with EOCs. SOCs show a signiÞ cantly greater 
in vitro proliferative potential compared with EOCs. [54,72] 
Recent studies have reported an expansion of  primary 
high proliferative potential smooth muscle outgrowth cells 
(HPP-SOC) from human peripheral blood mononuclear 
cells (PBMC) that participate in vasculogenesis and the 
formation of  neointima and adventitial microvasculature 
of  diseased arteries.[37�39] However, currently the knowledge 
on the SPC is very limited and considerable controversy 
exits over their lineage and phenotype.

PROGENITOR CELL FUNCTION AND VASCULAR 
DISEASE

An obvious question arising in the study of  progenitor 
cells is, �With the in-house availability of  progenitor cells, 
why do various vascular disorders develop? Why is it 
that the system can not self-restore its function utilizing 
the progenitor cells?� A logical answer is that under 
disease conditions, functions of  the progenitor cells are 
compromised. Indeed it is postulated that oxidative stress 
may modulate progenitor cells at the site of  vascular 
injury,[1,42] thus hampering progenitor cell functions.[76] 

It is still unclear whether such modulations occur at the 
bone marrow, in the peripheral circulation, or only at 
the site of  vascular repair/remodelling. Reactive oxygen 
species are a family of  highly reactive molecules that 
are formed within eukaryotic cells both enzymatically 
and non enzymatically by the one electron reduction of  
molecular oxygen, yielding superoxide anions (O2

-�). [77,78] 
By maintaining the concentrations of  superoxide within 
physiological limits through tight regulation of  their 
production and removal, cells are able to utilise these 
molecules in diverse signalling pathways ranging from acute 
vasodilation, maintaining vascular tone, vessel growth, and 
remodelling.[77,78] However, an imbalance between ROS 
production and removal leads to oxidative stress, a hallmark 
of  virtually all vascular pathophysiological states.[79] In a 
recent study, enhanced Nox2 expression was observed in 
EPCs derived from diabetic mice and this was associated 
with diminished EPC ability to differentiate endothelial 
cells.[80] Similarly, gene deletion of  glutathione peroxides 
(intracellular antioxidant enzyme) resulted in an oxidative 
stress-associated decline in EPC function.[80,81] In both these 
studies, oxidative stress attenuated EPC function without 
affecting cell number. Of  interest, gene deletion of  Nox2 
improved EPC function when these cells were treated (ex 
vivo/in vivo) with antioxidants. Contrary to this, treatment 
of  EPCs from wild type mice with antioxidant diminished 
EPC differentiation and recruitment.[80,81] These results 
indicate that although reactive oxygen species hamper EPC 
function, they may also be necessary for their physiological 
function. However, further research is needed in this Þ eld 
to critically answer these vital questions.

PHARMACOLOGICAL APPROACHES TO 
MODULATE PROGENITOR CELLS FUNCTION

As we now know that progenitor cell function is 
compromised under disease scenario, the obvious 
question would be, could we develop pharmacological 
approaches to improve the compromised function? 
Indeed, several pharmacological moieties that also 
have antioxidant potential mediate beneÞ cial effects via 
progenitor cell recruitment. For instance, in response to 
ischemic stress, enalapril (angiotensin-converting enzyme 
inhibitor) treated mice displayed a six-fold increase in 
the contribution of  bone marrow-derived EPCs to the 
ischemia-induced neovascularisation.[82] Statins also 
increased EPC recruitment in patients with chronic kidney 
disease[83] and heart failure.[58] This may be caused by their 
ability to regulate redox signalling. Erythropoietin, which 
does have antioxidant potential, plays an important role 
in the mobilization of  functionally active EPCs. [67,84,85] 
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Exogenous erythropoietin treatment inhibits the neointimal 
hyperplasia after arterial injury by mobilizing EPC to 
the neo-endothelium.[86,87] C reactive protein, which is 
a hallmark of  oxidative stress, is shown to attenuate 
endothelial progenitor cell survival, differentiation, and 
function via inhibiting nitric oxide.[88�91] A low m o lecular 
weight fucan (LMWF) compound, a sulfated polysaccharide 
with antioxidant effect, has been demonstrated to increase 
plasma levels of  stromal cell-derived factor 1 (SDF-1) 
and consequently to mobilize bone marrow-derived 
vascular progenitor cells (BMVPC). [92�94] Considering 
the nature of  the pharmacological effects, it is likely that 
these pharmacological approaches can be mimicked by 
natural product-based compounds as well. Indeed, recent 
studies have shown that certain natural products have the 
potential to improve the progenitor cell (especially EPC) 
function. [94�100]

CYTOKINES INFLUENCING PROGENITOR CELL 
DYNAMICS

A number of  blood borne and marrow derived cells are 
capable of  differentiating into an endothelial phenotype; 
however, the differentiation pathways are likely to be 
complex and currently are poorly understood. While 
the cytokines responsible for the activation of  EPCs are 
largely known, the exact sequence of  events leading to 
EPC differentiation, migration, and recruitment into the 
site of  injury is intensively investigated. It is well known 
that the redox status of  cells is a crucial determinant in the 
regulation of  the cytokine/chemokine system.[101]

Granulocyte-macrophage colony stimulating factor 
(GMCSF) and stromal cell-derived factor-1alpha 
(SDF) improves cardiomyocyte viability and function 
following ischemic cardiomyopathy.[102,103] GMCSF is 
reported to enhance reactive oxygen species formation in 
hematopoietic cells, which is vital to their differentiation 
into functional adult cells.[104] Transforming growth factor 
beta 1 (TGFbeta1) is yet another cytokine activated in 
cells under oxidative stress,[105] whose expression on 
smooth muscle cells increase endothelial progenitor cells 
adhesion and differentiation.[106] Reactive oxygen species 
(ROS) participate in the regulation of  platelet activation 
in an autocrine manner[107,108] and activated platelets 
secrete the chemokine SDF-1alpha, which facilitate 
primary adhesion and migration of  progenitor cells.[109,110] 
Preferential engraftment of  rapidly self-renewing marrow 
stromal cells into adult mice was due to SDF-1-mediated 
mobilization and peripheral homing of  progenitor cells 
in response to ischemia and associated oxidative stress. [79] 

Similarly, several other factors such as 8bromo-cAMP 
or adrenomedullin,[111] VEGF, Notch, Urokinase-type 
plasminogen activator (uPA),[112] ICAM-1,[113,114] vascular 
endothelial cadherin,[115] and beta-catenin are associated 
with promoting angiogenic progenitor cell mobilization, 
recruitment and differentiation[96,116-118] and it is indeed 
interesting to note that all these factors are directly or 
indirectly under tight redox regulation.[71,106,119,120]

WHY SHOULD WE LOOK AT NATURAL 
PRODUCTS?

Contrary to affordability of  scientifically tested 
pharmaceutical products by rich nations, many in 
developing and underdeveloped nations have relied upon 
the naturally available and time-tested products of  nature. 
Among these, the most popular are the ones used for a 
broad range of  disorders, by virtue of  their general tonic 
nature. These herbal general tonics enhance the overall 
ability of  the body�s immune system to fight against 
infections and several pathological agents. Such tonics 
or herbal preparations are extensively used in developing 
and underdeveloped nations as a supplement to Þ rst-line 
treatment. These supplements are extremely useful in 
improving the poor health associated with environmental 
pollution induced lung and micro vascular diseases and 
compromised immune system. Indeed, to many people�s 
surprise/satisfaction, some of  these herbal products have 
shown promising beneÞ ts for health and general well-being. 
However, the scientiÞ c rationale for such beneÞ ts remains 
unanswered and the lack of  proper documentations and 
scientiÞ c evaluations have often led to some adverse effects 
due to their improper use. When appropriately tested and 
documented, these herbal products, which may be locally 
grown, will prove to be of  immense aid in improving the 
general health status of  the population in the less privileged 
nations of  the world. It is also interesting to note that in the 
last couple of  years natural products are gaining increasing 
demand in the western world as well.

Flavonoids (flavonols, f lavones, isoflavones, and 
ß avanones) belong to a group of  natural compounds 
with variable phenolic structures and are present in plants 
used for preparing herbal general tonics.[95,99,100] Various 
hypotheses are suggested for beneÞ cial effects of  these 
compounds in improving the poor health associated with 
micro and macro vascular diseases. Over 4000 structurally 
unique ß avonoids have been identiÞ ed in plant sources. 
The ß avonoids have long been recognized to possess anti-
inß ammatory, antioxidant, anti-allergic, hepatoprotective, 
antithrombogeneic, and anti-viral properties. Hence, a 
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resurgence of  interest in traditional medicine together 
with an expanded effort in pharmacognosy has rekindled 
interest in ß avonoids.[95,100,121] Most of  the ß avonoids 
reduce macrophage M-CSF induced proliferation without 
affecting cellular viability and also inhibit TNFalpha 
production, iNOS expression, and NO production, 
which is associated with the inhibition of  the NF-kB 
pathway and stimulation of  anti-inß ammatory cytokine 
IL-10. These features are likely to modulate the vascular 
progenitor function as M-CSF is reported to mobilize 
progenitor cells to the site of  vascular injury.[99,100] 

Recently, prenylß avonoids were reported to signiÞ cantly 
promote the cardiac differentiation that was partly 
mediated via ROS signaling cascades. Furthermore, the 
anti-oxidative activity of  the prenylß avonoids inß uenced 
the cardiomyogenesis process.[95] Hence, it is envisaged 
that the antioxidant nature of  the natural products may 
play a critical role in the differentiation of  the vascular 
progenitor cells as well. In recent years, the identiÞ cation 
of  progenitor cells in the adult organ-systems has opened 
an altogether new approach to therapeutics. These 
progenitor cells are capable of  repairing the damaged 
cells/tissues and because many of  them are derived 
from macrophages, they can combat pathogens to a 
certain extent. Moreover, a continued effort is on to use 
the circulating levels of  the progenitor cells as a marker 
of  general health and capacity of  the body�s reparative 
process. Although there are several markers identiÞ ed on 
the progenitor cells, as a general rule, the expression of  
CD133 and CD34 are accepted as markers representing 
circulating progenitor cells, which may be derived from 
bone marrow and these cells have the potential to be 
involved in several tissue repair processes.

A few recently published studies show the potential 
beneÞ cial effects of  natural products (prenylß avonoids, 
icariin, berberine, green tea, fucodian, and icaritin)
[95,100] on EPCs; however, it is likely that such beneÞ cial 
effects also exist with other vascular or non vascular 
progenitor cells, which may have several health beneÞ ts. 
For instance, it was shown that low-molecular-weight 
fucodian enhances the circulating levels of  EPCs.[94] A 
similar effect on bone marrow derived progenitor cells is 
observed in chronic smokers consuming green tea.[96] Such 
effects may be attributed to the antioxidant nature of  the 
natural products enriched with ß avonoids.[99,100] Thus, it is 
likely that ß avonoid constituents of  the natural products 
contribute to the beneÞ cial effects on progenitor cells. 
Moreover, it can be hypothesized that the ß avonoids in 
herbal general tonics enhance the levels of  circulating 
progenitor cells (CD133+ve or CD34+ve cells), which in 
turn may contribute to general well being. Hence, it�s 

very likely that several natural products exist that can 
mimic the effects of  pharmacological agents/cytokines in 
positively modulating the vascular progenitors function. 
It�s highly envisaged to discover such natural products and 
employ them in the main stream of  vascular regenerative 
medicine.

CURRENT PITFALLS AND CHALLENGES AHEAD

While we now know that several progenitors exist with the 
system that contribute signiÞ cantly to the vascular repair 
process, the interesting fact that needs to be explored 
is identifying the factors that govern the dynamics of  
the progenitor cells. What are the factors that precisely 
regulate or trigger progenitor cell mobilization, recruitment, 
and differentiation events? Can natural products mimic 
and/or inß uence these functions? Despite considerable 
advancement in the progenitor cell biology, there are several 
challenges that remain unanswered and research towards 
addressing these issue is envisaged. For instance, the precise 
panel of  cell surface markers that deÞ ne EPCs, SPCs, or 
vascular progenitors as well as the different mechanisms that 
precisely regulate their dynamics are unknown. It would be 
interesting to know if  natural products have the tendency to 
regulate the progenitor�s cell surface markers and precisely 
guide their differentiation into endothelial and/or smooth 
muscle cells. As the progenitor cell distribution is diffused, it 
would be interesting and therapeutically vital to understand 
the behavior of  progenitor cells isolated from different 
regions and sources and it would be even more interesting 
to know if  natural products can selectively inß uence their 
function. Also, understanding the mechanism by which 
stem/progenitor cells achieve a functional improvement 
is the need of  the hour. Although the current beneÞ ts of  
natural products are limited to their antioxidant functions, 
it will be therapeutically valuable to know if  the beneÞ ts 
are beyond the antioxidant effects and are rather due to 
a direct or indirect effect on the cell surface markers and 
cell migration and differentiation events. Unrevealing the 
mystery of  differentiated progenitors working in such close 
concert with the vasculature will be a paradigm shift in the 
vascular pathophysiology and will redeÞ ne the way vascular 
diseases are currently treated.
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