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ABSTRACT
Objective: Nowadays, many researchers focused on finding and devel-
oping the new inhibitor of HDAC4 and HDAC7 using in silico tools such 
as docking, pharmacophore approaches, and molecular dynamics simula-
tion. The aim of this research is to identify pharmacophore of HDAC4 and 
HDAC7. Method: In this research, pharmacophore-based virtual screening 
was used to find new HDAC4 and HDAC7 inhibitor from Indonesian herbal 
database. From MUBD-HDACs database, active compounds of HDAC4 and 
HDAC7 were divided into training and test set. Based on pharmacophore 
model generation for HDAC4 and HDAC7, 10 models were created. All the 
models were calculated and evaluated using some parameters of valida-
tion. Results: The best pharmacophore model for HDAC4 are model 6 and 
10, and for HDAC7 is model 1. Pharmacophore model 6 and 10 (HDAC4) 
have seven pharmacophore features include three HBA, one HBD, one 
aromatic ring, one negatively ionizable area and 1 hydrophobic. Pharma-
cophore model 1 (HDAC7) have five pharmacophore features include two 

HBA, one HBD, one negatively ionizable area and one hydrophobic. These 
selected models for HDAC4 and HDAC7 were using for virtual screening 
against Indonesian herbal database. Conclusion: Based on the results of 
the virtual screening, six hit compounds were obtained such as artocarpe-
sin, avicularin, dimboa glucoside, eriodictin, luteolin and mirabijalone c.

Key words: Pharmacophore, Virtual Screening, HDAC4, HDAC7, Indone-
sian Herbal Database.

Correspondence :

Arry Yanuar, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, West 
Java 16424, INDONESIA.

Phone: +62-21-7270031

Email: arry.yanuar@ui.ac.id

DOI: 10.5530/jyp.2018.10.3

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others 
to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

INTRODUCTION
Class IIa HDAC inhibitors have been developed as anti-cancer drugs, 
anti-inflammatory, Huntington’s disease, human papillomavirus and an-
ti-diabetic. Compounds that have been developed into a class of HDAC 
inhibitors include hydroxamic acid, cyclic peptides, aliphatic acids and 
benzamide.1 However, these compounds are not specific because it can 
work as an HDAC inhibitor in class I and class II HDACs.2 Therefore, 
it is necessary to develop a class IIa HDAC inhibitor that is specific and 
potent to be used as a new drug candidate compounds.
The importance key of early level drug discovery is finding new lead 
compounds with potential interactions with the specific targets. Wet-lab 
high-throughput screening (HTS) is one of conventional method that 
adopted by pharmaceutical industry. High cost and low hit rate from 
HTS methods stimulate the researcher to develop computational meth-
ods (in silico) to conduct faster and low cost in drug discovery.3,4

Rapid search for small molecules for binding to its biological target be-
come a key role in the drug discovery process. SBVS (structure-based 
virtual screening) is commonly used to facilitate virtual screening of a 
database, docking is one of virtual screening if 3D structure of target is 
available.5 Advances in structure biology by using X-ray crystallography 
and nuclear magnetic resonance spectroscopy can explain more detail 
about 3D structure of the targets and their interaction with ligands.6,7

The basic concept of a pharmacophore is an interaction between a ligand 
and a receptor as a function of an individual functional group’s chemical 
features. Since the chemical features in pharmacophore modelling are 
known and accepted by medicinal chemists, various models have been 
shown to be successful in the drug discovery process using a computa-
tional technique.8 Medicinal chemists use representations of pharmaco-
phores to characterize the ability of molecular structures to bind to the 
site of specific biological targets. Since the ligand–receptor interaction 

takes place in the three-dimensional area, pharmacophore models that 
are based on observed 3D interaction patterns may be the better intu-
itional choice. Nevertheless, if a receptor-relevant ligand conformation or 
conformation ensemble is not yet known, the quantitative structure–ac-
tivity relationship (QSAR) studies that are based on 3D pharmacophore 
models may diverge.9 One process of additional conformer generation, 
an often limiting and time-consuming step in pharmacophore matching 
methods, involves the 3D alignment of molecular features, for example, 
matching a screening molecule to a given pharmacophore model.10

Three dimension pharmacophore-ligand based use the database to find a 
compound hit more often used because it has several advantages, name-
ly the complexity of the process of identifying a hit can be reduced by 
representation pharmacophoric of ligand interaction with a target that 
produces search time shorter and query-based pharmacophore can use 
to searching for a new drug candidate with a scaffold and different func-
tional groups than the native ligand that is used for modeling pharma-
cophore.11

In recent studies, HDAC inhibitors have shown some essential pharma-
cophore features: (a) a functional group that acts as a chelating agent 
for the metal ion in the active site (anchor), (b) a hydrophobic cap for 
interaction with amino acid residues at the entrance of the N-acetyl 
lysine-binding channel, and (c) a linker with a 5–6 hydrocarbon chain 
length, which connects both the hydrophobic cap and the anchor.12,13 In 
this research, pharmacophore models were built from a dataset of known 
active ligands; the best-validated model would continue to the next step, 
virtual screening against herbald database contains 1377 compounds 
from Indonesian plant.14
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(42.86). On model of pharmacophore 6 and 10 there are seven features 
pharmacophore such as three HBA (Hydrogen Bond Acceptor) (red 
ball), one HBD (Hydrogen Bond Donor) (green ball), one aromatic ring 
(purple), one negatively ionizable area (red) and one hydrophobic (yel-
low ball) (Figure 2). The negatively ionizable area (-NH-) is a functional 
group that have interaction to the Zn2+ ion in the active site.

Validation of 3D Pharmacophore-Ligand Based Models 
HDAC7
Based validation parameter calculations in Table 2 and ROC graph (Fig-
ure 3) model pharmacophore 3D-based ligands are best used in model 
1 with a value EF1% (24.0), the value AUC100% (0.86), accuracy (0.5626), 
sensitivity (0.8462), specificity (0.5574) and precision (3.36). In the mod-
el, there are five features pharmacophore such as two HBA (red ball), 
one HBD (green ball), one negative ion (red) and one hydrophobic (yel-
low ball) (Figure 4). The negatively ionizable area (-NH-) is a functional 
group that have interaction to the Zn2+ ion in the active site.

Virtual screening
Based on the election results and the best model for HDAC4 HDAC7 
that has been done, then the next stage is pharmacophore models are 
used to perform virtual screening against a database of medicinal plants 
originally from Indonesia (herbaldb: www.herbaldb.farmasi.ui.ac.id) to-
taling 1377 compound. From the results obtained HDAC4 pharmaco-
phore screening models hit the compound number as many as 551 units 
(40.01% of the total in 1377 compounds). From the results obtained 

MATERIALS AND METHODS

Instruments
Mac Mini with the specification Operating System X Yosemite version 
10.10, processor 2.6 GHz Intel Core i5, memory 8 GB 1600 MHz DDR3, 
graphics Intel Iris 1536 MB.

Materials
The three dimensional (3D) sequence of protein HDAC Class IIa 
(HDAC4 and HDAC7) homo sapiens are retrieved from online data-
base: NCBI website, Research Collaboratory for Structural Bioinformat-
ics (www.ncbi.nlm.nih.gov) and website Protein Data Bank (www.pdb.
org). Two dimensional structures format .mol or .mol2 from database 
Indonesian Herbal database (herbaldb.farmasi.ui.ac.id).14 The three-di-
mensional structure of decoy are retrieved A Directory of Useful Decoys 
(DUD) (dude.docking.org).15

Methods
Protein and dataset of ligand preparation
The three-dimensional structures of proteins HDAC4 and HDAC7 are 
obtained from PDB (www.rcsb.org/pdb/home/home.do). For HDAC4, 
2VQM (PDB ID) structure of HDAC 4 catalytic domain bound to a hy-
droxamic acid inhibitor with resolution 1.8 Å.16 For HDAC7, 3C10 (PDB 
ID) crystal structure of catalytic domain of human histone deacetylase 
HDAC 7 in complex with Trichostatin A (TSA) with resolution 2.4 Å 
and 3ZNS (PDB ID) HDAC 7 bound with inhibitor Tfmo inhibitor TMP 
942 with resolution 2.45 Å.17 A dataset of ligand is obtained from the 
MUBD-HDACs database.18 and divided into training and test set. De-
coy compounds are generated from the test set using DUDE (www.dude.
docking.org).

Formation and validation of 3D pharmacophore-ligand based models
Three-dimensional (3D) pharmacophore-ligand based are generated 
using LigandScout 4.09.1.19 The dataset for HDAC4 includes 6 active 
compounds as a training set, 39 compounds as test set and 2040 decoys. 
The dataset for HDAC7 includes 11 active compounds as training set, 13 
compounds as test set and 714 decoys. For each 3D pharmacophore-li-
gand based HDAC4 and HDAC7, 10 models of pharmacophore are build 
and copied into screening perspective. Test set and decoy are prepared 
into .ldb format file and used for screened against 10 pharmacophore 
models. Some parameters of validation such as ROC (Receiver Operat-
ing Characteristic), AUC100% (Area Under Curve), EF1% (Enrichment Fac-
tor) will be calculated.

Virtual screening
Based on validation of 3D pharmacophore-ligand based models, The 
best models were copied into screening perspective for virtual screen-
ing using LigandScout 4.09.1. In this step, herbaldb database (herbaldb.
farmasi.ui.ac.id) that contains 1377 natural compounds original from 
Indonesian plants were screened with the best models from validation 
results and some new hits compounds would be obtained.14 Herbaldb 
database is prepared into .ldb format file.

RESULTS

Validation of 3D Pharmacophore-Ligand Based Models 
HDAC4
Based on validation parameter calculations in Table 1 and ROC graph 
(Figure 1), the model pharmacophore 3D-based ligands are best used in 
the model 6 and the model 10 with EF1% (24.0), the value AUC100% (0.65), 
accuracy (0.9793), sensitivity (0.3077), specificity (0.9922) and precision 

Figure 1: ROC best results of HDAC4 (pharmacophore model 6 and 10).

Figure 2: Pharmacophore features (2D and 3D) from the best model of 
HDAC4.
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Figure 3: ROC best results of HDAC7 (pharmacophore model 1).
Figure 4: Pharmacophore features (2D and 3D) from the best model of 
HDAC7.

Table 1:Parameter validation of HDAC4 pharmacophore models.

Model EF1% AUC100% Accuracy Sensitivity Specificity Precision

1 26.7 0.56 0,9812 0,1282 0,9975 50,00

2 14.5 0.54 0,9788 0,0769 0,9961 27,27

3 23.7 0.55 0,9808 0,1026 0,9975 44,44

4 26.7 0.60 0,9812 0,2051 0,9961 50,00

5 22.8 0.58 0,9803 0,1538 0,9961 42,86

6 24.0 0.65 0,9793 0,3077 0,9922 42,86

7 17.8 0.55 0,9793 0,1026 0,9961 33,33

8 25.1 0.60 0,9808 0,2051 0,9956 47,06

9 15.2 0.55 0,9784 0,1026 0,9951 28,57

10 24.0 0.65 0,9793 0,3077 0,9922 42,86

Table 2: Parameter validation of HDAC7 pharmacophore models.

Model EF1% AUC100% Accuracy Sensitivity Specificity Precision

1 24.0 0.86 0,5626 0,8462 0,5574 3,36

2 0.0 0.79 0,2063 1,0000 0,1919 2,20

3 32.0 0.90 0,2105 1,0000 0,1961 2,21

4 8.0 0.89 0,4828 0,9231 0,4748 3,10

5 0.0 0.87 0,1774 1,0000 0,1625 2,13

6 8.0 0.71 0,4717 0,9231 0,4635 3,05

7 28.0 0.61 0,5516 0,8462 0,5462 3,28

8 24.0 0.86 0,4773 0,8462 0,4706 2,83

9 16.0 0.91 0,3081 1,0000 0,2955 2,52

10 24.0 0.87 0,2036 0,9231 0,1905 2,03



Erlina et al.: Pharmacophore-Based Virtual Screening of HDAC4 and HDAC7

10� Journal of Young Pharmacists, Vol 10, Issue 1, Jan-Mar, 2018

HDAC4 pharmacophore screening models hit the compound number 
as many as 647 units (46.99% of the total in 1377 compounds). Selection 
of hit compounds that will proceed to the stage of molecular dynamics 
simulations based on the examination of Drug-Likeness use of online 
applications molsoft (http://molsoft.com/mprop/). Examination of drug-
likeness includes several parameters Lipinski rule of five: a molecular 
weight that is < 500, the number of HBA is < 10, the number of HBD 
is < 5, and LogP values < 5.20 Compounds that are the hit artocarpesin, 
avicularin, dimboa glucoside, eriodictin, luteolin and mirabijalone C.
Based on Table 3, can be seen that the compounds hit DIMBOA glu-
coside value pharmacophore fit the highest of 44.60 with four pharma-
cophore features, three HBA and one HBD. Avicularin hit compounds, 
luteolin and artocarpesin have four features one hydrophobic pharma-
cophore, two HBA and one HDB. Compounds hit eriodictin, and mira-
bijalone c has three features of pharmacophore consisting of two HBA 
and one HBD.

DISCUSSION
Based on Table 1 and 2, the best model for pharmacophore 3D-based 
ligands for HDAC4 is represented by model 6 and 10 which have score 
EF1% (24.0) and AUC100% (0.65) and the best model for pharmacophore 
3D-based ligands for HDAC7 is represented by model 1 which have 
score EF1% (24.0) and AUC100% (0.86). The best Pharmacophore models 
are comply the requirements of enrichment factor indicator to define the 
enrichment performance for each matrix unit as very good (EFmax ≥ 
30), good (30 > EFmax < 20), medium (20 > EFmax < 10), or poor (EF-
max < 10).21 We analyzed based on pharmacophore model features of 
HDAC4 and HDAC7, there are four basic pharmacophore features that 
important for ligand-receptor interaction: HBA, HBD, negatively ioniz-
able area and hydrophobic.
In the 2D pharmacophore of HDAC4, position HBA represented by O 
and OH groups, pharmacophore HBD group represented by N, phar-
macophore negative ions represented by a group NH, hydrophobic and 
aromatic ring pharmacophore represented by benzene which is located 
to the right of the group O=S=O (Figure 2). In the 2D pharmacophore 
of HDAC7, position HBA represented by O and OH groups, pharma-
cophore HBD group represented by O, pharmacophore negative ions 
represented by a group NH, hydrophobic pharmacophore group repre-
sented by C in benzene marked in yellow (Figure 4).
From pharmacophore model of HDAC4 and HDAC7, CO-NH-OH 
known as Zinc Binding Group (ZBG) have two HBA, one HBD, and one 
negatively ionizable area; this group has an important role for interaction 
with the Zn2+ ion. Atom O from OH-NH-CO will build covalent coor-
dination with Zn2+ ion, and the other atom will interact with active sites 
amino acids such as Asp and His.

Table 3: Hit compounds from virtual screening pharmacophore model 
against herbaldb.

Compounds Pharmacophore 
Features

Pharmacophore-Fit 
Score

Mirabijalone C 37.30

Artocarpesin 44.11

Avicularin 44.40

Dimboa glucoside 44.60

Eriodictin 37.34

Luteolin 44.33

Dimboa glucoside compound has one negatively ionizable area as Zinc 
Binding Group (ZBG) with the mechanism of interaction atom O from 
OH-NH-CO will build covalent coordination with the Zn2+ ion. The 
pharmacophore-fit score of dimboa glucoside (44.60) is the highest of all 
compounds. Artocarpesin, avicularin and luteolin have the pharmaco-
phore-fit score (44.11), (44.40) and (44.33), they have one hydrophobic 
pharmacophore feature that similarly with the pharmacophore models 
features from HDAC4 and HDAC7. Mirabijalone c and eriodictin have 
the lowest pharmacophore fit-score (37.30) and (37.34) because they 
only have three basic pharmacophore features (2 HBA and 1 HBD).
All of the compounds have three basic pharmacophore features (2 HBA 
and 1 HBD), we are analyzed that addition of one negatively ionizable 
area (dimboa glucoside – Figure 5) will increase pharmacophore fit 
score rather than addition of one hydrophobic feature (artocarpesin – 
Figure 6, avicularin – Figure 7, and luteolin – Figure 8). Two compounds 
(mirabijalone c – Figure 9 and eriodictin – Figure 10) that only have 
three basic pharmacophore features (2 HBA and 1 HBD) have the low-
est pharmacophore fit score. The mapping pharmacophore features from 
all compounds can be used further for chemical structure modification 
to add some missing pharmacophore features related to best pharmaco-
phore models of HDAC4 and HDAC7.

CONCLUSION
Based on 3D pharmacophore-ligand based model validation for HDAC4 
results, model 6 and 10 are the best models with seven pharmacophore 
features such as three HBA, one HBD, one aromatic ring, one negatively 
ionizable area and one hydrophobic. Based on 3D pharmacophore-ligand 
based model validation for HDAC7 results, model 1 is the best model 
with five pharmacophore features such as two HBA, one HBD, one nega-
tively ionizable area and one hydrophobic. Based on virtual screening 
3D pharmacophore-ligand based of HDAC4 and HDAC7 with herbaldb 
database results, there are six hit compounds (artocarpesin, avicularin, 
dimboa glucoside, eriodictin, luteolin and mirabijalone c). The results 
obtained in this research could be recommended for further studies such 
as molecular dynamic simulation, in vitro and in vivo.
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