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INTRODUCTION
Cardiac Steroid (CS) is one of the promising anticancer.1-8 The previous  
study showed that CS exhibited the most potent antitumor activity  
among 9,000 screened compounds.2 In the last decade, there is an  
increasing number of studies that reported the anticancer activities  
of CS.1,3-6 CS inhibited the proliferation and migration of cells, and also  
sensitised the multidrug resistant (MDR) strain.7 Moreover, Wei and  
colleagues reported that CS showed significant inhibition tumor growth 
in vivo below their lethal dose.8 One of the CS derivatives is bufadienolide.  
It has an extended six-membered lactone ring at position 17 of the  
steroidal scaffold. Different with the structure of cholesterol which is all 
in trans-conformation, the ring A/B and C/D in bufadienolides are in 
cis-fused conformation Figure 1. The cis-conformation was suggested 
as the pharmacophore of bufadienolides.4 Previously, bufadienolide was 
used as a treatment for heart disorder disease. However, bufadienolide 
has also been known to control the growth of cancer cells.9,10 One of the 
proposed molecular mechanisms of its anticancer activity is through 
the inhibition of Na+/K+-ATPase (NaK-ATPase).9-14 Supratman et al.  
reported the sub-micromolar inhibitory activities of three isolated  
bufadienolides from Indonesian plant Kalanchoe pinnata, namely C1-C3 
Figure 1, on the tumor-promoted Raji cell line.15 Computational methods,  
such as molecular docking, have been used to predict the molecular 
mechanism of bioactive compounds at the atomic-level.16-19 Therefore, 
the aims of this work were to study the structure-activity relationship of 
NaK-ATPase inhibition of three bufadienolides using molecular docking 
method.

METHODS
Preparation of Receptor and Ligands
The crystal structure of NAK-ATPase in complex with bufalin was  
retrieved from Protein Data Bank (rcsb.org/pdb/) with PDB ID 4RES.14 
The structure of ligands (C1, C2, and C3) were obtained from PubChem  
NCBI.20 Furthermore, the NaKATPase in complex with ligand was  
minimised to remove the sterical clashes between ligands and receptor. 
Since NAK-ATPase is located in the membrane, then lipid bilayer system  
was assembled using CHARMM-GUI membrane generator 21 with 0.07 M  
KCL in the water explicit solvent. Then, the complete structure was con-
verted to amber PDB format using Charmmlipid2amber.py. Hydrogen 
atoms were added to the protein structure using Leap module of AMBER 
14.22 The AM1-BCC partial atomic charges of ligands were calculated 
using antechamber module of AMBER 14. Minimisation was performed 
using Amber force field ff14SB,23 General Amber Force Field, and Amber  
Lipid force field 14 24 using 250 steepest descents and 750 conjugate  
gradient algorithms. The minimised structure was converted to PDB  
format using ambpdb module of AMBER 14.

Protein-Ligand Docking and Psycho-chemical Property Calculations
Docking of all ligands was performed with AutoDock 4.2.25 The structures 
of protein and ligand were extracted from the membrane and solvent 
molecules. Furthermore, they were converted into the pdbqt format by 
adding the atom type and charges using AutoDock Tools 1.5.6.26 The K+  
parameter was added to the AutoDock Parameter library, including its 
ionic charge. The size of the grid box of the receptor was 56 x 56 x 56 
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points with a grid spacing of 0.375 Å, centered in the binding site of 
bufalin. The Lamarckian Genetic algorithm was used with the following 
parameters: 100 number of runs, five million of energy evaluations, and 
250 of populations. The energy breakdown analysis was performed using 
summary_result4.py program from AutoDockTools Utilities. The total 
binding energy was break down into hydrogen bond and electrostatic 
energies. In addition, the ligand efficiency (total binding energy divided 
by a number of atoms) of each ligand was calculated by this program. 
Psycho-chemical property such as PSA and A Log P have been computed 
by Biovia Draw 2016.27

RESULT
The binding mode of bufalin in the NaK-ATPase was investigated from  
its crystal structure (PDB ID 4RES). It is shown that the 3-OH and  
14-OH groups of bufalin formed hydrogen bonds with Glu117 and 
Thr797, respectively. The steroidal core of bufalin formed CH-pi inter-
action with Phe783, while the rest of interactions between bufalin and  
NaK-ATPase was hydrophobic. Furthermore, all the bufadienolides  
(C1, C2, and C3) were superimposed to the crystal structure of bufalin 
inside the cavity of NaK-ATPase. It is shown that an oxygen atom of 
1,3,5-orthoacetate moieties of C1 and C2 were in short distance with 
the carboxylate group of Glu117 (2.72 Å). Hence, a repulsive force was 
expected. Moreover, the 1-OH and 5-OH groups of C3 were within the 
hydrogen bond distance with Glu117 (3.03 Å and 2.48 Å, respectively), 
while the aldehyde group (10-CHO) of C1 and C3 were predicted to  
form a hydrogen bond with Gln111 and Asn122. It is noted that the  
14-OH group of all bufadienolides potentially formed a hydrogen bond 
with Thr797 Figure 2.

Protein-Ligand Docking and Psycho-chemical Property Calculations
A repulsive force between the Glu117 and the 1,3,5-orthoacetate group of 
C1 and C2 was predicted due to the sterical hindrance from a loop which 
Glu117 is located. For this reason, this loop was objected to a short mini-
misation scheme to avoid the unfavorable interaction with C1 and C2. 
After minimisation, the interaction between 1,3,5-orthoacetate group 
and the loop was refined Figure 3. In general, the minimised structure of 
receptor has better interaction with all bufadienolides than the original 
crystal structure. Therefore, this structure was further used to dock all 
bufadienolides (C1, C2, and C3). As a result, there was a good corre-
lation between the docking binding energy and and the experimental  
data15 (R2 = 0.99). Table 1 reveals that the C1 has the lowest binding  
energy, followed by C2 and C3. Regarding the polar surface area (PSA) 
and log P, all compounds were predicted to have good absorptivity prop-
erties Table 1. However, it is noted that the PSA and log P values of C1 
were better than the C2 and C3. This ranking might also have explained  
the best activity of C1 as compared to the others, due to a fact that  
NaKATPase is located in the lipid bilayer membrane.
Further interaction analysis using BIOVIA Discovery Studio Visualizer 
showed that the C1 has four hydrogen bonds, four hydrophobic and 
seven CH-pi interactions, while the C2 has four hydrogen bonds, three  
hydrophobic and seven CH-pi interactions. Lastly, the C3 has the lowest  
number of interactions with only three hydrogen bonds, three hydro-
phobic and five CH-pi interactions with the receptor. The 10-CHO group  
of C1 and C3 formed hydrogen bonds with Asn122 and Gln111, respec-
tively, while the 10-CH2OH group of C2 formed a hydrogen bond with  
Gln111. An oxygen atom at the position 1 of the 1,3,5-orthoacetate  
moiety in C1 and C2 and the 1-OH group of C3 formed hydrogen bonds 
with Gln111. The 11-OH group of C1 and C2 formed hydrogen bonds  
with Asn122 and the backbone of Ile315, respectively. The 14-OH group 
of all bufadienolides formed hydrogen bonds with Thr797.

Figure 1: Structures of bufadienolides from Kalanchoe pinnata.

Figure 2: (A) Superimposed ligands in the binding cavity of NaK. An unfavorable  
interaction between the orthoacetate moiety and GLU117 was observed.  
(B) 14-OH of all bufadienolides potentially form hydrogen bond with THR797.

Moreover, the energy breakdown analysis of docking result showed that 
C1 has the highest ligand efficiency with strongest hydrogen bond and 
electrostatic interaction energies, followed by C2 and C3. Table 2.

DISCUSSION
The previous study reported that a phorbol derivateive induced the 
growth of tumor cell by over-stimulating the NaK-ATPase.5 Since a 
phorbol derivative was also used in Supratman’s experiment,15 then it is 
suggested that the reduction of tumor cell growth by the bufadienolides 
was due to specific inhibition towards NaK-ATPase. The docking result  
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The 1,3,5-orthoacetate moiety is a distinctive feature of C1 and C2 as 
compared to the structure of C3 and the other common bufadienolides.  
In C3, substituents at position 1 and 5 are the OH-groups, while at  
position 3 is an acetate group. Mijatovic et al. suggested that the substituents  
in positions 1, 3, and 5 were not very critical to the inhibition activity.1 
However, when we introduced a 1,3,5-orthoacetate moiety to C3 and 
docked it to the NaK-ATPase, the binding affinity was improved.
Mijatovic1 also suggested that the polar contact of the 10-CHO group 
with the Gln111 and Asn122 was not essential to the optimum inter-
action with NaK-ATPase. However, Larsen 28 showed that the 10-CHO  
group formed a hydrogen bond with Gln111 and Asn122. From our  
results, we agreed that the presence of 10-CHO group and the 1,3,5-ortho
acetate moiety lowered the binding energy by forming a hydrogen bond 
with Asn122. It is noted that the 10-CHO group in C3 and 10-CH2OH  
group in C2 were not formed a hydrogen bond with Asn122, thus  
decreasing the inhibitory effect. The importance of asparagine at position  
122 was tested by Canfield 30 and Lingrel.31 It is shown that the mutations  
of asparagine to glutamic acid at the position 122 (N122E) in the NaK-
ATPase decreased the inhibition activity of CS (ouabain). Therefore, 
this agrees with our proposal of the importance of hydrogen bond with 
Asn122, despite the simplified approach used in docking method.
The role of 11-OH group to the binding energy was observed in this 
study. We purposely removed the 11-OH from C1 compound Figure 5,  
which decreased the binding affinity by losing a hydrogen bond with 
Asn122. In contrast, Kamano et al. suggested that the 11-OH was not 
an important substituent for ligand binding.29 Interestingly, Supratman  
et al. found that the 11-OH group decreased the cytotoxicity of bufadi-
enolides.15 Thus, it is indicated that the formation of hydrogen bonds  
with Ile315 (in C2) and Asn122 (in C1) would increase the ligand’s  
selectivity to NaK-ATPase. Therefore, a hydrogen bond with Asn122 
might be one of the reasons for the better activity of C1 as compared to 
the C2. Furthermore, the energy breakdown analysis showed that C1 has 
the highest ligand efficiency among all, which means that the individual 
interaction in C1 was stronger than C2. Despite the similar number of 
hydrogen bond formed by C1 and C2, the 1,3,5-orthoacetate moiety and 
10-CH2OH in C2 shared the hydrogen bonds with Gln111 Figure 4. This 
sharing interaction would result in a weaker hydrogen bond,32 and hence 
the total energy of hydrogen bond in C2 was less than that of C1.

Table 1: Binding Energy and Experimental IC50 of Bufadienolides from Kalanchoe Plants.

Compound
IC50

(µM)

Molecular Docking Lipophilicity

RMSD
(Å)

Binding Energy
(kcal.mol-1)

PSA
(Å2)

Log P

C1 0.3 0.7 -10.7 111.5 0.9

C2 1.6 0.9 -9.5 114.7 0.7

C3 3.0 0.9 -8.9 130.4 0.4

Table 2: Energy breakdown analysis and ligand efficiency of computed ligands.

Compound
Hydrogen bond energy 

(kcal/mol)
Electrostatic interaction 

energy (kcal/mol)
Ligand efficiency (Binding 

energy/Σatoms)

C1 -1.9 -0.3 -0.32

C2 -1.7 -0.1 -0.29

C3 -1.1 -0.1 -0.26

Figure 3: Crystal structure (grey) and minimisation structure(cyan) binding 
cavity of NaK. The residues seem to move further outside the binding cavity 
after minimisation process.

Figure 4: Characteristic of hydrogen bond of CHO and CH2OH at the position 
10, (A) 10-CHO of C1 form hydrogen bond with ASN122, (B) 10-CH2OH of C2 
form hydrogen bond with GLN111, (C) 10-CHO of C3 form an intramolecular 
hydrogen bond with 1-OH and hydrogen bond with GLN111.

showed good correlation with the experimental value. The 1,3,5- 
orthoacetate moiety, 10-CHO, 11-OH, and 14-OH were suggested as the  
important substituents for antitumor activity of bufadienolide.
In this study, a crystal structure of NaK-ATPase which originated to 
genus Sus scrofa (PDB ID 4RES), with 98% identity with human NaK-
ATPase, was used as a protein target. The molecular mechanics mini-
misation, besides removing the sterical hindrance from Glu117 to a 
1,3,5-orthoacetate moiety, also relaxing the residues in the binding cavity 
and forming better interaction with bufadienolides.
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Regarding the physico-chemical properties of C1-C3, it is shown that 
their PSA and Log P values were correlated with their binding affinity, 
i.e., hydrophobicity increased the activity. As shown in Table 1, all of the 
Log P and PSA values were less than 5 and 140, respectively, indicating 
a good membrane permeability property.33,34 This result suggested that  
bufadienolides compounds, especially C1, would be able to enter the  
hydrophobic binding cavity of NaK-ATPase.

CONCLUSION
In summary, we have performed molecular docking to study the structure- 
activity relationship of bufadienolides derivatives from K. pinnata to the 
inhibition of NaK-ATPase. The crystal structure of NaK-ATPase from 
Sus scrofa bound to bufalin was used as protein target and as a control 
positive. The docking result showed a good agreement between the 
calculated binding energy and the experimental data. The presence of 
1,3,5-orthoacetate moiety, 10-CHO, 11-OH, and 14-OH increased the  
activity of C1 than the other bufadienolides. Although the role of 11-OH  
group was still debatable, this substituent appeared to decrease the  
toxicity of the bufadienolide and hence better selectivity. The result is 
also supported by the psycho-chemical properties value (PSA and LogP). 
This study suggests that C1-C3 possess good selectivity to NaK-ATPase  
and low toxicity, thus interesting to be further studied for anticancer  
activity.
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