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INTRODUCTION
Biotechnologically and economically crucial priceless prokaryotes are  
taken into consideration as natural source for clinically active antibiotics. 
They hold a prominent position due to their ability to produce second-
ary metabolites with complex structures and potent biological activities.1   

Marine resource has not been explored completely and is a hub for iso-
lation of rare actinomycetes with potency to produce novel bioactive  
compounds.2   The biosynthesis of the natural products involves the  
optimization studies for their production that can be engineered with 
systemic design for suitable physiological conditions and supplementary 
nutrients. Media constituents and the cultural parameters play impor-
tant role in antimicrobial agent’s production.3 
Traditional optimization includes the study of one-factor-at-a-time 
which is time consuming and tiresome. Further, the interactive effects 
of the variables are not known which lead to misleading conclusions, 
hence it is very critical to establish the optimum conditions that yield 
highest quantities of the bioactive metabolites with functional properties 
retained. RSM is a statistical protocol to materialize and systematize the 
process variables for optimizing the bioactive metabolite production.4,5  
RSM was implemented to optimize the process parameters in multi  

factorial design experiments6 for economizing the number of experi-
mental trials, hence it is extensively applied 7 for theoretical process of 
optimization8 and interpretation of experiments.9  

Bioengineers rely on fermentation kinetic information to design and 
control microbial processes using mathematical models. Of these, struc-
tured models consider cell structure, function and composition aspects; 
while unstructured models consider only total cellular concentration.  
However, later ones are proven to be accurate in describing many  
fermentation processes in a wide range of experimental conditions and 
media.10-15 To describe the system in better way, evaluation of assumed 
unstructured models with experimental statistics by considering the 
whole cell mass to explain the biological system and that in turn eluci-
dates the fermentation profiles of bio product microbial processes.16-17 
In this study, the main objectives were isolation and identification of 
the actinobacterial strain, optimization of different variables that influ-
ence the maximal production of bioactive metabolites using RSM and 
determine kinetic parameters of bioactive metabolite production from 
S.arabica VSM 25. 
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ABSTRACT
Objectives: To execute the influence of the physico-chemical variables on 
the production of the bioactive metabolites by Streptomonospra arabica
VSM-25 using Response Surface Methodology. Materials and Methods:
An actinobacterium strain isolated from the deep sea marine sediment 
samples was identified as Streptomonospra arabica VSM-25 by conventional 
and molecular approaches. RSM was employed to study the impact of five 
variables, viz. incubation time, pH, temperature, galactose and peptone 
concentrations on the production of antifungal metabolites by VSM-25. 
Growth related production formation kinetics and substrate utilization in 
batch system was analysed using mathematical and unstructured kinetic 
models.  Results: Statistical study showed that the incubation time, pH, 
Temperature, Concentration of galactose and peptone has a significant 
effect (p <0.0001) on the bioactive metabolite production at their individual 
and interactive level. A second order polynomial model provided a satisfied 
fit for experimental data with regard to the production of antifungal 
metabolites. Maximum antimycotic activity was achieved at incubation 
time (11 days), pH (8), temperature (30°C), galactose concentration (2%) 
and peptone concentration (1%). Unstructured mathematical kinetic model 
was developed and estimated kinetic parameters also exhibited good 
approximation in terms of model fitting and regression analysis. Conclusion: 
To the best of our knowledge this is the first report on the production of 
anti fungal metabolites from S. arabica using RSM and kinetic modelling 

studies which firmly support the application of RSM and kinetic modelling 
for optimization. The study may find potential application in rapid screening 
and production of novel drug molecules from unexploited natural sources.
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Key message: The outcome of the present study strongly supports, RSM 
based optimization of fermentation conditions. The optimization of envi-
ronmental parameters and cultural conditions plays a crucial role in the 
enhanced antimycotic activity. This study contributes towards scale-up of 
production of antifungal agents by Streptomonospora arabica VSM-25. The 
unstructured model provided a better approximation of kinetic profiles of 
bioactive metabolite production by the strain in shake-flask fermentations.
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MATERIALS AND METHODS
Isolation
The deep sea sediment samples were collected at different depths of the 
Bay of Bengal of coastal Andhra Pradesh, India, were transported to the 
laboratory in sterile bags and air dried at room temperature. The samples 
were subjected to pre-treatment with sodium dodecyl sulphate (0.05%) 
and yeast extract (5%).18 One gram of pre-treated sample was suspended 
in 100 ml of sterile distilled water and serial dilutions were prepared 
down to 10-4 dilution was plated on Marine Agar medium (containing 
0.5% peptic digest of animal tissue, 0.1% yeast extract, 0.01% ferric 
citrate, 1.94% sodium chloride, 0.88% magnesium chloride, 0.32% sodium 
sulphate, 0.18% calcium chloride, 0.05% potassium chloride, 0.016% 
sodium bicarbonate, 0.08% potassium bromide, 0.003% strontium 
chloride, 0.002% boric acid, 0.0004% sodium silicate, 0.0002% sodium 
fluorate, 0.0001% ammonium nitrate, 0.0008% disodium phosphate and 
2% agar (pH 8)) supplemented with nalidixic acid (50µgml-1) and nystatin 
(50µgml-1). The inoculated plates were incubated at 300 C for 4 weeks.

Identification
The actinomycetes strain VSM-25 isolated from the deep sea marine 
sediment samples was identified as S.arabica VSM-25 by cultural, morpho-
logical, physiological and biochemical studies along with 16S ribosomal 
DNA (rDNA) analysis (GenBank: KU507598). The strain was maintained 
on ISP-2 agar medium at 40 C.  

Experimental design
RSM is a group of mathematical and statistical evaluation that enables 
the assessment of the alliance existing between the experimental factors 
and their response. To achieve significant model, prior information of 
the process and process variables under study is required. RSM was 
executed to analyse the optimum levels of the five variables (Time, pH, 
Temperature, concentrations of Galactose and Peptone) for the production 
of bioactive metabolites by VSM 25 and its effect against responses was 
measured in terms of anti-mycotic activity (zone of inhibition in mm), 
by disk diffusion method. The selection of the variable under study 
followed the one-factor-at-a-time approach. The coded and uncoded 
individual variables used in the study are listed (Table 1). Range of 
variables and central points were selected based on the preliminary 
experimental information (Supplementary Table 1). The experiments 
were designed with application of 25 full factorial central composite 
design for five variables that consists 32 factorial factors, 10 axial factors 
and 8 replicates. The 8 replicates at centre points used for each categorical 
variable which includes a total of 50 experiments (Supplementary Table 1), 
were calculated from the subsequent equation (1).19

= + + = + × + =52 2 2 2 5 8 50n
cN n n (1)

A second order polynomial equation was used to express the responses 
as a characteristic of the independent variables as follows:20

β β β β−
= = = = += + ∑ + ∑ + ∑ ∑2 1
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i i i i ii i i j i ij i jY X X X X (2)

Y = Predicted response, β0 = intercept coefficient, βi = linear coefficient, 
βij = interaction coefficients, βii = quadratic coefficients, Xi and Xj = coded  
values of the five additive variables. 3D plots were generated by varying 
two variables with the experimental range with the other variable constant  
at the central point. Fractional factorial design with centre points 
are augmented with a group of “star points” that allows estimation of  
curvature.
Regression and graphical analysis of the data obtained was executed  
using Design-Expert 7. By optimizing the second-order polynomial 
equation and analysing the 3D plots,21 the optimum combinations of  

individual variables were determined. Statistical model analysis was 
performed by ANOVA which include Fisher’s F-test, its probability P(F), 
correlation coefficient R and determination coefficient R2 which measures 
the goodness of the model fit.  Adequate precision have been taken into 
consideration. The quadratic model for each variable was represented as 
3D plots. 

Unstructured Kinetic Model
The proliferation of VSM 25 with restricting carbon substrates impacts 
the antifungal metabolite production. Many researchers have used 
mathematical and unstructured kinetic models to define the substrate 
utilization and growth-related production kinetics in a batch system.22

An unstructured kinetic model was developed to study the performance 
of Nocardiopsis litoralis VSM-8 23 and the similar model is used, here, 
to predict the kinetics of S.arabica VSM 25 fermentation for its growth, 
substrate utilization and antifungal metabolite production. The kinetic 
parameters viz., specific cell growth rate (µmax), d-1, unique bioactive 
metabolite production rate, d-1, maximum specific cell growth rate, d-1, 
etc., were estimated.24

RESULTS 
Central Composite Design 
50 experiments were executed in randomized run order. Supplementary 
Table 1 explains the experimental design matrix which determines the 
impact of the five variables on the production of the bioactive metabolite 
by VSM 25 and its effect on the five responses (Zone of inhibition in 
mm). The suggested sequential model analyse the sum of squares and 
lack of fit tests for the best outcome quadratic model, for all the five 
responses (Table 2).   

Response surface analysis of bioactive metabolite 
production
The highest antimycotic activity of the bioactive metabolite produced by 
VSM 25 was recorded when the strain was grown in a medium containing 
2% galactose, 1% peptone with pH 8 incubated at 30°C for 11 days. The 
maximum zone of inhibition against all the five responses was found 
to be 20.8mm (Aspergillus niger), 18.9 mm (Aspergillus flavus), 20 mm 
(Fusarium oxysporum), 18mm (Fusarium solani) and 19 mm (Candida 
albicans). 
RSM regression analysis was performed to fit the experimental data of 
each response through second-order polynomial equation. The model  
is found to be significant with the p-value (<0.0001) for all the five  
responses. The lower the p value the more significant is the model.  
Using the experimental data for the bioactive metabolite production, the 
polynomial model was regressed by only considering significant terms 
(Table 3).

Table 1: Uncoded and coded levels of variables used in the RSM design

Symbols Independent Variables
Coded levels

-1 (Low) 0 (Middle) +1 (High)

A Time of Incubation 
(days) 10 11 12

B pH 7.0 8.0 9.0

C Temperature (0C) 25.0 30.0 35.0

D Concentration of 
Galactose (% w/v) 1.0 2.0 3.0

E Concentration of 
Peptone (% w/v) 0.5 1.0 1.5
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Table 2: Sequential model fitting for all the responses (in terms of inhibition zone from the bioactive metabolite 
production)

Model parameter Aspergillus niger Aspergillus 
flavus

Fusarium oxysporum Fusarium solani Candida albicans

Sequential model sum of squares- Quadratic vs 2FI (suggested)

Sum of squares 104.97 78.21 84.44 55.92 68.85

d.f.a 5 5 5 5 5

Mean square 20.99 15.64 16.89 11.18 13.77

F-value 210.04 513.86 136.86 255.14 2827.45

p-value 
(Prob > F)

<0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Lack of fit tests- Quadratic (suggested)

Sum of squares 2.19 0.88 2.70 1.27 0.14

d.f.a 22 22 22 22 22

Mean square 7.535X10-3 0.040 0.12 0.058 6.42X10-3

F-value 0.98 --- 0.98 --- ---

p-value 
(Prob > F)

0.5534 --- 0.5534 --- ---

d.f.- degrees of freedom

Table 3: Second-order quadratic model equations and regression coefficients (%) of responses

Response Second-order quadratic model equation (in coded factors)

Aspergillus niger
Y= -113.10310+ 12.93121A + 9.37724B + 1.40159C + 2.86931D + 5.73862E + 0.000000AB + 0.000000AC +0.000000AD 
+0.000000AE + 0.000000BC + 0.000000BD + 0.000000BE +0.000000CD +0.000000CE +0.000000DE - 0.59233A2 – 0.59233B2 – 
0.023693C2 – 0.79233D2 – 3.16931E2

Aspergillus flavus
Y= -70.94483+7.78966A + 7.33793B + 0.84069C + 3.23448D + 6.06897E + 0.000000AB + 0.000000AC +0.000000AD +0.000000AE 
+ 0.000000BC + 0.000000BD + 0.000000BE +0.000000CD +0.000000CE +0.000000DE - 0.35862A2 – 0.45862B2 – 0.014345C2 – 
0.85862D2 – 3.43448E2

Fusarium oxysporum
Y= -86.80345+8.75690A + 8.04138B +1.42621C +2.61034D +6.22069E + 0.000000AB + 0.000000AC +0.000000AD +0.000000AE 
+ 0.000000BC + 0.000000BD + 0.000000BE +0.000000CD +0.000000CE +0.000000DE - 0.40259A2 – 0.50259B2 – 0.024103C2 – 
0.70259D2 – 3.21034E2

Fusarium solani
Y= -69.77379+8.04759A +5.82552B +1.12883C +2.48138D +3.96276E + 0.000000AB + 0.000000AC +0.000000AD +0.000000AE 
+ 0.000000BC + 0.000000BD + 0.000000BE +0.000000CD +0.000000CE +0.000000DE - 0.37034A2 – 0.37034B2 – 0.018814C2 – 
0.67034D2 – 2.28138E2

Candida albicans
Y5= -82.25793+7.21586A +11.47517B +0.75628C +2.59379D +4.58759E + 0.000000AB + 0.000000AC +0.000000AD +0.000000AE 
+ 0.000000BC + 0.000000BD + 0.000000BE +0.000000CD +0.000000CE +0.000000DE - 0.32345A2 – 0.72345B2 – 0.012938C2 

–0.72345D2 – 2.49379E2

Y = response, A = Incubation time (days), B = pH, C = Temperature (0C), D = Galactose concentration (%w/v), E = Peptone concentration (%w/v)

Model adequacy checking
Results of ANOVA used to test the model adequacy at confidence level 
of 99% were given in Table 4. Coefficient of determination (R2) indicates 
the proportion of the total variability of the model explained and sug-
gests that model to be a good fit. The R2 value of the model was found to 
be > 0.9 and reflected to be a very good fit between the observed and the 
predicted response values (Table 4). The values of the adjusted R2 (>0.9) 
for model is high which indicate high significance of the model. Signal 
to noise ratio is measured by adequate precession and values greater 
than four are desirable. Coefficient variation is the standard deviation 
expressed in terms of percentage of the mean and should be less than 
10%.25 The model showed statistical insignificant Lack-of-fit (Table 4) 
which indicate the model to be good fit. The experimental values are in 
close agreement with the predicted values. Which imply that model for 
each response fits the experimental data adequately.  

Variables and interaction effects
3D plots of RSM illustrate the interactive effects of the variables on the 
five responses with two varying parameters at a fixed value of the third 
operating parameter (Figure 1, 2, 3, 4, 5). The evaluation of the plots 
show that all the five parameters recorded a positive effect at the begin-
ning and attained a maximum production and further increase in the 
range of values and concentration showed a negative effect on the 
production of the bioactive metabolites by VSM-25. 

Optimum operating conditions and corresponding 
results
Optimum incubation time, pH, temperature and concentration of galactose 
and peptone was found to be 11 days, 300 C, pH 8 and concentration of 
galactose 2% and peptone 1% (Figure 6). The recorded zones of inhibi-
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(LILP) and Logistic Incorporated Modified Leudeking-Piret (LIMLP) 
models to the experimental data were found to be high, thus revealing 
correct precision of the models. 
The L model parameters µmax, X0, Xmax and LILP model parameters 
α and β, were estimated from shake-flask data and a higher α values 
than β showed that antifungal metabolite production by VSM 25 is more 
growth related than non-growth associated in shake flask. The simulated 
LIMLP model parameters, γ and η, are also in desirable agreement with 
the experimental data, confirms the chosen model is more appropriate 
to predict the substrate consumption pattern in bioactive metabolite 
production by VSM 25.26 Further, Table 6 shows similarity between 
experimental and model predicted zones of inhibition from agar diffusion 
tests. Hence, the unstructured models provided a better approximation 
of kinetic profiles of bioactive metabolite production by S.arabica VSM 
25 in submerged shake flask fermentations. 

DISCUSSION
RSM based experimental approach with central point was used to 
determine the significant parameters and their interactions that influence 

tion (mm) against the five responses was found to be 20.8 mm for Asper-
gillus niger, 18.9 mm for Aspergillus flavus, 20 mm for Fusarium oxyspo-
rum, 18 mm for Fusarium solani and 19 mm for Candida albicans. All 
the controlling parameters were found to be within the range, whereas 
the production of the bioactive metabolite by VSM-25 was found to be 
high. 

Estimation of kinetic parameters
The profiles of S. arabica VSM 25 growth, restraining substrate utilization 
results obtained from shake flask experiments and model kinetics have 
been compared in Figure 7. The assessment of experimental versus 
model predicted inhibition zones of produced bioactive metabolite on 
media, inoculated with A. niger, A. flavus, F. oxysporum, F. solani and 
C. albicans strains over the time are shown in Figure 8. A very good fit 
observed between model predicted and experimental results. In this 
study, Microsoft Excel Solver 2010 was used to fit the experimental data 
with unstructured Logistic models, nonlinear regression using least-
square method and estimated biokinetic parameters are tabulated in 
Table 5. It also indicates determination coefficient (R2) values obtained 
through fitting Logistic (L), Logistic Incorporated Leudeking-Piret 

Table 4: Analysis of ANOVA variance to test the adequacy of the model

Statistics Response

A.niger A.flavus F.oxysporum F.solani C.albicans

R2 0.9748 0.9898 0.9604 0.9796 0.9981

Adj-R2 0.9574 0.9828 0.9331 0.9655 0.9968

Pred- R2 0.9447 0.9742 0.9131 0.9483 0.9952

Adequate Precession 20.800 32.662 15.431 23.228 77.767

CV % 1.74 1.04 2.01 1.30 0.41

Table 5: Estimated kinetic parameters using L, LILP, LIMLP model equations

Kinetic 
Parameters

A.niger A.flavus F.oxysporum F.solani C.albicans

Logistics incorporated Modified Luedeking-Piret (LIMLP) Model parameters

γ (g.S/g.X) 23.356

R2 0.9493

η (g.S/(g.X.d)) 1.8421

Logistics incorporated Luedeking-Piret (LILP) Model parameters

α (mm/g.X) 85.179 59.965 77.075 70.157 83.546

R2 0.956 0.9 0.9683 0.962 0.9641

β(mm/(g.X.d)) 7.5188 11.2782 7.5188 7.5188 7.5188

Logistic (L) Model Parameters

µmax(d-1) 0.7642

R2 0.9654

X0 (g/L) 0.005

Xmax (g/L) 0.266

Table 6: Comparison of zones of inhibition (mm) from shake-flask experiments and from 
model

Maximum 
Zone of 

Inhibition (mm)
A.niger A.flavus F.oxysporium F. solani C.albicans

Experimental 29 29 28 26 29

Model fitted 33.6 32.91 31.05 29.72 33.17
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Figure 1: 3D plots showing interactive effects of selective variables on zone of Inhibition (mm) of the bioactive compound production by VSM 25 against 
Aspergillus niger. 
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Figure 2: 3D plots showing interactive effects of selective variables on zone of Inhibition (mm) of the bioactive compound production by VSM 25 against 
Aspergillus flavus. 
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Figure 3: 3D plots showing interactive effects of selective variables on zone of Inhibition (mm) of the bioactive compound production by VSM 25 against 
Fusarium oxysporum 
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Figure 4: 3D plots showing interactive effects of selective variables on zone of Inhibition (mm) of the bioactive compound production by VSM 25 against 
Fusarium solani.  
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Figure 5: 3D plots showing interactive effects of selective variables on zone of Inhibition (mm) of the bioactive compound production by VSM 25 against 
Candida albicans. 
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the optimization process for the antifungal metabolite production by 
S.arabica VSM 25.  All the 50 experiments were accomplished in 
randomized run order to determine the interactive effects of process 
variables, their effect against the responses (Inhibition of the growth 
of the pathogenic fungi was represented in mm). The optimization of 
bioactive metabolite production parameters was generated and the 
predicted values of the yield were well consistent with experimental values. 
The statistical significance of the model is determined by the p-value 
and the p value of all the five response was found to be <0.0001.27 The 
model is said to be highly significant if the value of p is < 0.05 28. Regression 
analysis of ANOVA showed a good fit of the experimental data of each 
response through second order polynomial equation. Coefficient 
determination (R2) indicates the proportion of the total variability of the 
model explained and suggested that the model is a good fit. The 
suggested R2 value for a good fit model should be close to 1 or at least 
0.80.29 The value (R2) of the 5 responses was > 0.9 (Table 4) which indicate 
that model is a good fit. But R2 increases with factors added which are 
not significant.30 Hence adjusted R2 is used for model adequacy, since 
adjusted R2 adjusts for the models’ size.25 The insignificant factors added 
to the model are decreased by the adjusted R2.30 The adjusted (R2) value 
of all the responses was > 0.9 which indicate the model to be a very good 
fit.  Signal to noise ratio is measured by adequate precession and values 
greater than four are desirable for the model to be significant. Coefficient 
variation (CV) is the standard deviation expressed in terms of percentage  
of the mean and should be less than 10%.25 Adequate precession and  
Coefficient variation of the five responses in the present study was found 
to be greater than four and less than 10%.
3D plots obtained showed the interactive effects of the process variables 
on the bioactive metabolite production and its effect against the five 
responses. All the five variables studied had significant impact on the 
bioactive metabolite production by VSM 25.25 The optimum values of  
time of incubation, pH, temperature and concentration of galactose  
and peptone was found to be 11 days, 300 C, pH 8 and concentration of 
galactose 2% and peptone 1%. The recorded zones of inhibition (mm) 
against the five responses included 20.8 mm for Aspergillus niger, 18.9 mm  
for Aspergillus flavus, 20 mm for Fusarium oxysporum, 18 mm for Fusarium  
solani and 19 mm for Candida albicans by the bioactive metabolite  
produced by VSM-25.   
The estimated kinetic parameters for the S.arabica VSM 25 growth limiting  
substrate utilization and bioactive metabolite production (in terms of  
inhibition zones measured for 5 fungal pathogens) showed good regression  
squares with good fit. Therefore, the unstructured models furnished a  
better approximation of kinetic profiles of bioactive metabolite production  
by S.arabica VSM 25 in submerged shake flask fermentations. Subsequently,  
over all findings carry the insights of the crucial information for large 
scale production of the antimycotic natural metabolites from novel 
VSM-25 strain that may be used to find new compounds for the clinical 
utility. 

CONCLUSION
A novel actinomycete VSM-25 was able to grow and synthesize the  
bioactive metabolite under a wide range of experimental conditions. 
RSM based experimental study determine the significant parameters 
and their interactions affecting the optimization process. Optimization 
of bioactive metabolite production parameters were designed by CCD 
of RSM, and the predicted values are in agreement with experimental  
values. High values of R2, adjusted R2, predicted R2 and adequate  
precession along with low values of the coefficient of variation concluded 
that the models for responses fit the experimental data adequately. The 
unstructured models furnished a better approximation of kinetic profiles 

Figure 6: Response optimization plots of all the five variables and responses.

Figure 7: Experimental and model predicted kinetics of biomass, substrate 
utilization.  ●- Experimental Biomass concentration (g/L), ∆- Experimental 
substrate concentration (g/L), ----- Model predicted values (in each case).

Figure 8: Comparison of experimental and model predicted kinetics of zone 
of inhibition.
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of bioactive metabolite production by S. arabica VSM 25 in submerged 
shake flask fermentations.
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